[1] |
An L X, Fu X Y, Lai C K. On spectral Cantor-Moran measures and a variant of Bourgain's sum of sine problem. Adv Math, 2019, 349: 84-124
doi: 10.1016/j.aim.2019.04.014
|
[2] |
An L X, He L, He X G. Spectrality and non-spectrality of the Riesz product measures with three elements in digit sets. J Funct Anal, 2019, 277(1): 255-278
doi: 10.1016/j.jfa.2018.10.017
|
[3] |
An L X, He X G. A class of spectral Moran measures. J Funct Anal, 2014, 266(1): 343-354
doi: 10.1016/j.jfa.2013.08.031
|
[4] |
An L X, He X G, Lau K S. Spectrality of a class of infinite convolutions. Adv Math, 2015, 283: 362-376
doi: 10.1016/j.aim.2015.07.021
|
[5] |
An L X, He X G, Li H X. Spectrality of infinite Bernoulli convolutions. J Funct Anal, 2015, 269(5): 1571-1590
doi: 10.1016/j.jfa.2015.05.008
|
[6] |
Dai X R, He X G, Lai C K. Spectral property of Cantor measures with consecutive digits. Adv Math, 2013, 242: 187-208
doi: 10.1016/j.aim.2013.04.016
|
[7] |
Dai X R, He X G, lau K S. On spectral N-Bernoulli measures. Adv Math, 2014, 259: 511-531
doi: 10.1016/j.aim.2014.03.026
|
[8] |
Deng Q R. Spectrality of one dimensional self-similar measures with consecutive digits. J Math Anal Appl, 2014, 409(1): 331-346
doi: 10.1016/j.jmaa.2013.07.046
|
[9] |
Deng Q R, Li M T. Spectrality of Moran-type self-similar measures on R. J Math Anal Appl, 2022, 506(1): 125547
doi: 10.1016/j.jmaa.2021.125547
|
[10] |
Deng Q R, Li M T. Spectrality of Moran-type Bernoulli convolutions. Bull Malays Math Sci Soc, 2023, 46: Article number 136
|
[11] |
Ding D X. Spectral property of certain fractal measures. J Math Anal Appl, 2017, 451(2): 623-628
doi: 10.1016/j.jmaa.2017.02.040
|
[12] |
Dutkay D E, Haussermann J, Lai C K. Hadamard triples generate self-affine spectral measures. Tran Amer Math Soc, 2019, 371(2): 1439-1481
doi: 10.1090/tran/2019-371-02
|
[13] |
Dutkay D E, Jorgensen P E T. Fourier duality for fractal measures with affine scales. Math Comput, 2012, 81(280): 2253-2273
doi: 10.1090/mcom/2012-81-280
|
[14] |
Fu Y S, Tang M W. An extension of Laba-Wang's theorem. J Math Anal Appl, 2020, 491(2): 124380.
doi: 10.1016/j.jmaa.2020.124380
|
[15] |
Fuglede B. Commuting self-adjoint partial differential operators and a group theoretic problem. J Funct Anal, 1974, 16(1): 101-121
doi: 10.1016/0022-1236(74)90072-X
|
[16] |
He L, He X G. On the Fourier orthonormal bases of Cantor-Moran measures. J Funct Anal, 2017, 272(5): 1980-2004
doi: 10.1016/j.jfa.2016.09.021
|
[17] |
Hu T Y, Lau K S. Spectral property of the Bernoulli convolutions. Adv Math, 2008, 219(2): 554-567
doi: 10.1016/j.aim.2008.05.004
|
[18] |
Jorgensen P E T, Pedersen S. Dense analytic subspaces in fractall $L^{2}$-spaces. J Anal Math, 1998, 75(1): 185-228
doi: 10.1007/BF02788699
|
[19] |
Kolountzakis M N, Matolcsi M. Tiles with no spectra. Walter de Gruyter, 2006, 18(3): 519-528
|
[20] |
Laba I, Wang Y. On spectral Cantor measures. J Funct Anal, 2002, 193(2): 409-420
doi: 10.1006/jfan.2001.3941
|
[21] |
Li J L. Spectra of a class of self-affine measures. J Funct Anal, 2011, 260(4): 1086-1095
doi: 10.1016/j.jfa.2010.12.001
|
[22] |
Shi R. Spectrality of a class of Cantor-Moran measures. J Funct Anal, 2019, 276(12): 3767-3794
doi: 10.1016/j.jfa.2018.10.005
|
[23] |
Strichartz R S. Mock Fourier series and transforms associated with certain Cantor measures. J Anal Math, 2000, 81(1): 209-238
doi: 10.1007/BF02788990
|
[24] |
Strichartz R S. Convergence of Mock Fourier series. J Anal Math, 2006, 99: 333-353
doi: 10.1007/BF02789451
|
[25] |
Wang Z Y, Dong X H, Liu Z S. Spectrality of certain Moran measures with three-element digit sets. J Math Anal Appl, 2018, 459(2): 743-752
doi: 10.1016/j.jmaa.2017.11.006
|