数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1427-1439.
收稿日期:
2022-01-29
修回日期:
2023-02-15
出版日期:
2023-10-26
发布日期:
2023-08-09
通讯作者:
王超
E-mail:2539778968@qq.com;wangchaosudamath@163.com
作者简介:
王梓欢,Email: 基金资助:
Received:
2022-01-29
Revised:
2023-02-15
Online:
2023-10-26
Published:
2023-08-09
Contact:
Chao Wang
E-mail:2539778968@qq.com;wangchaosudamath@163.com
Supported by:
摘要:
考虑一类具有两个自由度的弱耦合对称碰撞方程的对称碰撞周期解的存在性、重性问题. 在一类关于时间映射的超线性条件下证明了方程无穷多个对称碰撞调和解和对称碰撞次调和解的存在性. 同时, 还给出了一个适合两个自由度的对称碰撞方程的对称碰撞周期解存在的充分条件.
中图分类号:
王梓欢,王超. 一类双质子弱耦合碰撞系统的对称周期解[J]. 数学物理学报, 2023, 43(5): 1427-1439.
Wang Zihuan,Wang Chao. Symmetric and Periodic Solutions for a Class of Weakly Coupled Systems Composed of Two Particles with Obstacles[J]. Acta mathematica scientia,Series A, 2023, 43(5): 1427-1439.
[1] | Lazer A, Mckenna P. Periodic bounding for a forced linear spring with obstacle. Diff Inte Equa, 1992, 5: 165-172 |
[2] |
Bonheune D, Fabry C. Periodic motions in impact oscillators with perfectly elastic bouncing. Nonlinearity, 2002, 15: 1281-1298
doi: 10.1088/0951-7715/15/4/314 |
[3] |
Qian D. Large amplitude periodic bouncing for impact oscillators with damping. Proc Amer Math Soc, 2005, 133: 1797-1804
doi: 10.1090/proc/2005-133-06 |
[4] |
Sun X, Qian D. Periodic bouncing solutions for attractive singular second-order equations. Nonlinear Anal, 2009, 71: 4751-4757
doi: 10.1016/j.na.2009.03.049 |
[5] | Liu Q, Wang Z. Periodic impact behavior of a class of Hamiltonian oscillators with obstacles. J Math Appl Anal, 2010, 65: 67-74 |
[6] | Fonda A, Sfecci A. Periodic bouncing solutions for nonlinear impact oscillators. Adv Nonlinear Stu, 2013, 13: 179-189 |
[7] | Qian D, Torres P. Bouncing solutions of an equation with attractive singularity. Proc Roy Soc Edingburgh Sect A, 2004, 134: 201-213 |
[8] |
Qian D, Torres P. Periodic motions of linear impact oscillators via successor map. SIAM J Math Anal, 2005, 36: 1707-1725
doi: 10.1137/S003614100343771X |
[9] |
丁卫, 钱定边. 碰撞 Hamiltonian 系统的无穷小周期解. 中国科学: 数学, 2010, 40: 563-574
doi: 10.1360/za2010-40-6-563 |
Ding W, Qian D B. Infinitesimal periodic solutions of impact Hamiltonian systems. Scientia Sinica Mathematica, 2010, 40: 563-574
doi: 10.1360/za2010-40-6-563 |
|
[10] |
Jiang M. Periodic solutions of second order differential equations with an obstacle. Nonlinearity, 2006, 19: 1165-1183
doi: 10.1088/0951-7715/19/5/007 |
[11] |
Ding W. Subharmonic solutions of sublinear second order systems with impacts. J Math Anal Appl, 2011, 379: 538-548
doi: 10.1016/j.jmaa.2011.01.036 |
[12] | Ding W, Qian D, Wang C, Wang Z. Existence of Periodic Solutions of sub-linear Hamiltonian Systems. Acta Math Sin Eng Ser, 2016, 32: 621-632 |
[13] |
Wu X, Li X. Existence and multiplicity of solutions for a class of forced vibration problems with obstacles. Nonlinear Anal, 2009, 71: 3563-3570
doi: 10.1016/j.na.2009.02.021 |
[14] |
Zharnitsky V. Invariant tori in Hamiltonian systems with impacts. Comm Math Phys, 2000, 211: 289-302
doi: 10.1007/s002200050813 |
[15] | Ortega R. Dynamics of a forced oscillator having an obstacle//Benci V, Cerami G, Degiovanni M, Fortunato D. Variational and Topological Methods in the Study of Nonlinear Phenomena. Progre Nonlinear Differential Equations Appl 49. Boston: Birkhauser Press, 2001: 75-87 |
[16] | Qian D, Sun X. Invariant tori for asymptotically linear impact oscillators. Science in China Series A, 2006, 49: 669-687 |
[17] |
Wang Z, Liu Q, Qian D. Existence of quasi-periodic solutions and Littlewood's boundedness problem of sub-linear impact oscillators. Nonlinear Anal: TMA, 2011, 74: 5606-5617
doi: 10.1016/j.na.2011.05.046 |
[18] |
Piao P, Sun X. Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials. Comm Pure Appl Anal, 2013, 13: 645-655
doi: 10.3934/cpaa |
[19] |
Wang C, Qian D, Liu Q. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete and Continuous Dynamical Systems, 2016, 36: 2305-2328
doi: 10.3934/dcdsa |
[20] |
Herrera A, Torres P. Periodic solutions and chaotic dynamics in forced impact oscillators. SIAM J Appl Dyn Syst, 2013, 12: 383-414
doi: 10.1137/120880902 |
[21] |
Nakajima F. Even and periodic solution of the equation ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() doi: 10.1016/0022-0396(90)90059-X |
[22] |
王超. 一类超线性 Hill 型对称碰撞方程的周期运动. 中国科学: 数学, 2014, 44: 235-248
doi: 10.1360/N012013-00093 |
Wang C. The periodic motions of a class of symmetric superlinear Hill's impact equations. Scientia Sinica Mathematica, 2014, 44: 235-248
doi: 10.1360/N012013-00093 |
|
[23] | Papini D. Boundary value problems for second order differential equations with super-linear terms: a topological approch. Udline: Udline University, 2000 |
[24] |
王超, 刘期怀, 钱定边, 王志国. 拓扑定理及其在超线性脉冲方程中的应用. 中国科学: 数学, 2014, 44: 957-968
doi: 10.1360/012014-42 |
Wang C, Liu Q H, Qian D B, Wang Z G. A topological theorem and its application to the superlinear equations including impulses for the existence of periodic solutions. Scientia Sinica Mathematica, 2014, 44: 957-968
doi: 10.1360/012014-42 |
[1] | 党云贵,代玉霞,喻习梅. ![]() |
[2] | 赵迎春,孙炯,姚斯琴,布仁满都拉. 一类内部具有不连续性的不定Strum-Liouville算子的非实特征值问题[J]. 数学物理学报, 2021, 41(6): 1643-1656. |
[3] | 刘琼,刘英迪. 一个混合核Hilbert型积分不等式及其算子范数表达式[J]. 数学物理学报, 2020, 40(2): 369-378. |
[4] | 王超. 一类带有界回复力非线性Hill型方程的周期解[J]. 数学物理学报, 2019, 39(4): 761-772. |
[5] | 马羚未, 方钟波. 具有加权非局部源和Robin边界条件的反应-扩散方程解的爆破时间下界[J]. 数学物理学报, 2017, 37(1): 146-157. |
[6] | 韦东奕. 具有一般非线性一维平均曲率方程正解的准确个数[J]. 数学物理学报, 2016, 36(1): 1-13. |
[7] | 李昆, 郑召文. 一类具有转移条件的Sturm-Liouville方程的谱性质[J]. 数学物理学报, 2015, 35(5): 910-926. |
[8] | 刘琼. 一个具多参数核为双曲余切函数的积分不等式[J]. 数学物理学报, 2014, 34(4): 851-858. |
[9] | 刘琼, 龙顺潮. 一个推广的Hilbert型积分不等式[J]. 数学物理学报, 2014, 34(1): 179-185. |
[10] | 辛冬梅, 杨必成. 一个新的Hilbert型积分不等式的推广[J]. 数学物理学报, 2010, 30(6): 1648-1653. |
[11] | 蔡好涛;. 一种Cauchy型主值积分的求积公式的一致收敛性[J]. 数学物理学报, 2006, 26(3): 421-425. |
[12] | 徐辉明;刘太顺. 几个多复变数加权全纯函数空间的边界值与对偶性[J]. 数学物理学报, 2006, 26(1): 113-123. |
[13] | 王光. 一类整函数空间中的可除性问题[J]. 数学物理学报, 2001, 21(3): 326-334. |
[14] | 赵新泉. 奇异积分方程解的稳定性[J]. 数学物理学报, 1998, 18(1): 63-69. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 318
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|