[1] |
Protter M H, Weinberger H F. Maximum Principles in Differential Equations. Englewood Cliffs: Prentice-Hall, 1967
|
[2] |
Friedman A. Partial Differential Equation of Parabolic Type. Englewood Cliffs: Prentice-Hall, 1964
|
[3] |
Akagi G, Melchionna S. Porous medium equation with a blow-up nonlinearity and a non-decreasing constraint. Nonlinear Differ Equ Appl, 2019, 26(2): Article 10
|
[4] |
Anderson J R, Deng K. Global solvability for the porous medium equation with boundary flux governed by nonlinear memory. J Math Anal Appl, 2015, 423(2): 1183-1202
doi: 10.1016/j.jmaa.2014.10.041
|
[5] |
Andreu F, Mazón J M, Toledo J, Rossi J D. Porous medium equation with absorption and a nonlinear boundary condition. Nonlinear Anal TMA, 2002, 49(4): 541-563
doi: 10.1016/S0362-546X(01)00122-5
|
[6] |
Ding J T, Shen X H. Blow-up time estimates in porous medium equations with nonlinear boundary conditions. Z Angew Math Phys, 2018, 69(4): Article 99
|
[7] |
Iagar R G, Sánchez A, Blow up profiles for a quasilinear reaction-diffusion equation with weighted reaction. J Differential Equations, 2021, 272: 560-605
doi: 10.1016/j.jde.2020.10.006
|
[8] |
Li F C, Xie C H. Global existence and blow-up for a nonlinear porous medium equation. Appl Math Lett, 2003, 16(2): 185-192
doi: 10.1016/S0893-9659(03)80030-7
|
[9] |
Liang Z L. Blow up rate for a porous medium equation with power nonlinearity. Nonlinear Anal TMA, 2010, 73(11): 3507-3512
doi: 10.1016/j.na.2010.06.078
|
[10] |
Schaefer P W. Blow-up phenomena in some porous medium problems. Dynam Systems Appl, 2009, 18(1): 103-109
|
[11] |
Tian H M, Zhang L L. Blow-up solution of a porous medium equation with nonlocal boundary conditions. Complexity, 2020, 2020: Article ID 9037287
|
[12] |
Wang Z Y, Yin J X. Note on blow-up of solutions for a porous medium equation with convection and boundary flux. Colloq Math, 2012, 128(2): 223-228
doi: 10.4064/cm128-2-7
|
[13] |
Wu X L, Gao W J. Blow-up of the solution for a class of porous medium equation with positive initial energy. Acta Math Sci, 2013, 33B(4): 1024-1030
|
[14] |
Zhou J. A multi-dimension blow-up problem to a porous medium diffusion equation with special medium void. Appl Math Lett, 2014, 30: 6-11
doi: 10.1016/j.aml.2013.12.003
|
[15] |
Du L L. Blow-up for a degenerate reaction-diffusion system with nonlinear localized sources. J Math Anal Appl, 2006, 324(1): 304-320
doi: 10.1016/j.jmaa.2005.11.052
|
[16] |
Lei P D, Zheng S N. Global and nonglobal weak solutions to a degenerate parabolic system. J Math Anal Appl, 2006, 324(1): 177-198
doi: 10.1016/j.jmaa.2005.12.012
|
[17] |
Li Y X, Gao W J, Han Y Z. Boundedness of global solutions for a porous medium system with moving localized sources. Nonlinear Anal TMA, 2010, 72(6): 3080-3090
doi: 10.1016/j.na.2009.11.047
|
[18] |
Mu C L, Hu X G, Li Y H, Cui Z J. Blow-up and global existence for a coupled system of degenerate parabolic equations in a bounded domain. Acta Math Sci, 2007, 27B(1): 92-106
|
[19] |
Mu C L, Su Y. Global existence and blow-up for a quasilinear degenerate parabolic system in a cylinder. Appl Math Lett, 2001, 14(6): 715-723
doi: 10.1016/S0893-9659(01)80032-X
|
[20] |
Quir${\rm \acute{o}}$s J D, Rossi J D. Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions. Indiana Univ Math J, 2001, 50(1): 629-654
doi: 10.1512/iumj.2001.50.1828
|
[21] |
Shen X H, Ding J T. Blow-up phenomena in porous medium equation systems with nonlinear boundary conditions. Comput Math Appl, 2019, 77(12): 3250-3263
doi: 10.1016/j.camwa.2019.02.007
|
[22] |
Wang Z J, Zhou Q A, Lou W Q. Critical exponents for porous medium systems coupled via nonlinear boundary flux. Nonlinear Anal TMA, 2009, 71(5/6): 2134-2140
doi: 10.1016/j.na.2009.01.047
|
[23] |
Xia A Y, Fan M S, Li S. Blow-up and life span estimates for a class of nonlinear degenerate parabolic system with time-dependent coefficients. Acta Math Sci, 2017, 37B(4): 974-984
|
[24] |
Payne L E, Philippin G A. Blow-up phenomena for a class of parabolic systems with time dependent coefficients. Appl Math, 2012, 3(4): 325-330
|