[1] |
Lazer A, Mckenna P. Periodic bounding for a forced linear spring with obstacle. Diff Inte Equa, 1992, 5: 165-172
|
[2] |
Bonheune D, Fabry C. Periodic motions in impact oscillators with perfectly elastic bouncing. Nonlinearity, 2002, 15: 1281-1298
doi: 10.1088/0951-7715/15/4/314
|
[3] |
Qian D. Large amplitude periodic bouncing for impact oscillators with damping. Proc Amer Math Soc, 2005, 133: 1797-1804
doi: 10.1090/proc/2005-133-06
|
[4] |
Sun X, Qian D. Periodic bouncing solutions for attractive singular second-order equations. Nonlinear Anal, 2009, 71: 4751-4757
doi: 10.1016/j.na.2009.03.049
|
[5] |
Liu Q, Wang Z. Periodic impact behavior of a class of Hamiltonian oscillators with obstacles. J Math Appl Anal, 2010, 65: 67-74
|
[6] |
Fonda A, Sfecci A. Periodic bouncing solutions for nonlinear impact oscillators. Adv Nonlinear Stu, 2013, 13: 179-189
|
[7] |
Qian D, Torres P. Bouncing solutions of an equation with attractive singularity. Proc Roy Soc Edingburgh Sect A, 2004, 134: 201-213
|
[8] |
Qian D, Torres P. Periodic motions of linear impact oscillators via successor map. SIAM J Math Anal, 2005, 36: 1707-1725
doi: 10.1137/S003614100343771X
|
[9] |
丁卫, 钱定边. 碰撞 Hamiltonian 系统的无穷小周期解. 中国科学: 数学, 2010, 40: 563-574
doi: 10.1360/za2010-40-6-563
|
|
Ding W, Qian D B. Infinitesimal periodic solutions of impact Hamiltonian systems. Scientia Sinica Mathematica, 2010, 40: 563-574
doi: 10.1360/za2010-40-6-563
|
[10] |
Jiang M. Periodic solutions of second order differential equations with an obstacle. Nonlinearity, 2006, 19: 1165-1183
doi: 10.1088/0951-7715/19/5/007
|
[11] |
Ding W. Subharmonic solutions of sublinear second order systems with impacts. J Math Anal Appl, 2011, 379: 538-548
doi: 10.1016/j.jmaa.2011.01.036
|
[12] |
Ding W, Qian D, Wang C, Wang Z. Existence of Periodic Solutions of sub-linear Hamiltonian Systems. Acta Math Sin Eng Ser, 2016, 32: 621-632
|
[13] |
Wu X, Li X. Existence and multiplicity of solutions for a class of forced vibration problems with obstacles. Nonlinear Anal, 2009, 71: 3563-3570
doi: 10.1016/j.na.2009.02.021
|
[14] |
Zharnitsky V. Invariant tori in Hamiltonian systems with impacts. Comm Math Phys, 2000, 211: 289-302
doi: 10.1007/s002200050813
|
[15] |
Ortega R. Dynamics of a forced oscillator having an obstacle//Benci V, Cerami G, Degiovanni M, Fortunato D. Variational and Topological Methods in the Study of Nonlinear Phenomena. Progre Nonlinear Differential Equations Appl 49. Boston: Birkhauser Press, 2001: 75-87
|
[16] |
Qian D, Sun X. Invariant tori for asymptotically linear impact oscillators. Science in China Series A, 2006, 49: 669-687
|
[17] |
Wang Z, Liu Q, Qian D. Existence of quasi-periodic solutions and Littlewood's boundedness problem of sub-linear impact oscillators. Nonlinear Anal: TMA, 2011, 74: 5606-5617
doi: 10.1016/j.na.2011.05.046
|
[18] |
Piao P, Sun X. Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials. Comm Pure Appl Anal, 2013, 13: 645-655
doi: 10.3934/cpaa
|
[19] |
Wang C, Qian D, Liu Q. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete and Continuous Dynamical Systems, 2016, 36: 2305-2328
doi: 10.3934/dcdsa
|
[20] |
Herrera A, Torres P. Periodic solutions and chaotic dynamics in forced impact oscillators. SIAM J Appl Dyn Syst, 2013, 12: 383-414
doi: 10.1137/120880902
|
[21] |
Nakajima F. Even and periodic solution of the equation $\ddot{u}+g(u)=e(t)$. J Differential Equation, 1990, 83: 277-299
doi: 10.1016/0022-0396(90)90059-X
|
[22] |
王超. 一类超线性 Hill 型对称碰撞方程的周期运动. 中国科学: 数学, 2014, 44: 235-248
doi: 10.1360/N012013-00093
|
|
Wang C. The periodic motions of a class of symmetric superlinear Hill's impact equations. Scientia Sinica Mathematica, 2014, 44: 235-248
doi: 10.1360/N012013-00093
|
[23] |
Papini D. Boundary value problems for second order differential equations with super-linear terms: a topological approch. Udline: Udline University, 2000
|
[24] |
王超, 刘期怀, 钱定边, 王志国. 拓扑定理及其在超线性脉冲方程中的应用. 中国科学: 数学, 2014, 44: 957-968
doi: 10.1360/012014-42
|
|
Wang C, Liu Q H, Qian D B, Wang Z G. A topological theorem and its application to the superlinear equations including impulses for the existence of periodic solutions. Scientia Sinica Mathematica, 2014, 44: 957-968
doi: 10.1360/012014-42
|