数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1409-1416.

• • 上一篇    下一篇

分数阶抛物方程整体解的径向对称性与单调性

唐炎娟()   

  1. 湖南第一师范学院数学与统计学院 长沙 410205
  • 收稿日期:2022-06-07 修回日期:2022-03-24 出版日期:2023-10-26 发布日期:2023-08-09
  • 作者简介:唐炎娟,Email: yanjuantang@126.com
  • 基金资助:
    国家自然科学基金(12201201)

The Radial Symmetry and Monotonicity of Entire Solutions for Fractional Parabolic Equations

Tang Yanjuan()   

  1. School of Mathematics and Statistics, Hunan First Normal University, Changsha 410205
  • Received:2022-06-07 Revised:2022-03-24 Online:2023-10-26 Published:2023-08-09
  • Supported by:
    NSFC(12201201)

摘要:

该文研究了分数阶抛物方程整体解的径向对称性与单调性. 为了得出整体解的对称性与单调性, 运用陈文雄和武乐云[9]取得的狭窄区域原则和反对称函数的极值原理. 除此之外, 为了克服分数阶 Laplacian 算子的非局部性, 采用了分数阶抛物形式的移动平面法.

关键词: 分数阶抛物方程, 整体解, 对称性, 单调性, 移动平面法

Abstract:

This paper mainly develops the radial symmetry and monotonicity of entire solutions for fractional parabolic equations. To obtain the symmetry and monotonicity of entire solutions, the narrow region principle and maximum principle for antisymmetric functions in [9] are needed. Furthermore, to circumvent the difficulty from nonlocality for the fractional Laplacian, a fractional parabolic version of the method of moving planes will be adopted.

Key words: Fractional parabolic equations, Entire solutions, Symmetry, Monotonicity, The method of moving planes

中图分类号: 

  • O175