[1] |
Aubin T. Onlinear Analysis on Manifolds. Monge-Ampère Equations. New York: Springer-Verlag, 1982
|
[2] |
Bettiol R, Piccione P. Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions. Pacific J Math, 2013, 266: 1-21
doi: 10.2140/pjm
|
[3] |
Bettiol R, Piccione P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calc Var Partial Differential Equations, 2013, 47: 789-807
doi: 10.1007/s00526-012-0535-y
|
[4] |
Bérard-Bergery L. La courbure scalaire de variétés riemanniennes//Séminaire Bourbaki. Berlin, Heidelberg: Springer, 2006: 225-245
|
[5] |
Brendle S. Blow-up phenomena for the Yamabe equation. J Amer Math Soc, 2008, 21: 951-979
doi: 10.1090/jams/2008-21-04
|
[6] |
Caffarelli L A, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm Pure Appl Math, 1989, 42: 271-297
doi: 10.1002/(ISSN)1097-0312
|
[7] |
Dai G. Two Whyburn type topological theorems and its applications to Monge-Ampère equations. Calc Var Partial Differential Equations, 2016, 55: 97
doi: 10.1007/s00526-016-1029-0
|
[8] |
Dai G. Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros. Discrete Contin Dyn Syst, 2016, 36: 5323-5345
doi: 10.3934/dcdsa
|
[9] |
de Lima L L, Piccione P, Zedda M. On bifurcation of solutions of the Yamabe problem in product manifolds. Ann Inst H Poincaré Anal Non Linéaire, 2012, 29: 261-277
doi: 10.4171/aihpc
|
[10] |
Gidas B, Ni W M, Nirenberg L. Symmetry and related properties via the maximum principle. Comm Math Phys, 1979, 68: 209-243
doi: 10.1007/BF01221125
|
[11] |
Henry G, Petean J. Isoparametric hypersurfaces and metrics of constant scalar curvature. Asian J Math, 2014, 18: 53-68
doi: 10.4310/AJM.2014.v18.n1.a3
|
[12] |
Jin Q, Li Y, Xu H. Symmetry and asymmetry: The method of moving spheres. Adv Differential Equations, 2008, 13: 601-640
|
[13] |
Kobayashi O. Scalar curvature of a metric with unit volume. Math Ann, 1987, 279: 253-265
doi: 10.1007/BF01461722
|
[14] |
Obata M. The conjecture on conformal transformations of Riemannian manifolds. J Diff Geom, 1971, 6: 247-258
|
[15] |
Petean J. Metrics of constant scalar curvature conformal to Riemannian products. Proc Amer Math Soc, 2010, 138: 2897-2905
doi: 10.1090/S0002-9939-10-10293-7
|
[16] |
Petean J. Multiplicity results for the Yamabe equation by Lusternik-Schnirelmann theory. J Funct Anal, 2019, 276: 1788-1805
doi: 10.1016/j.jfa.2018.08.011
|
[17] |
Pollack D. Nonuniqueness and high energy solutions for a conformally invariant scalar equation. Comm Anal Geom, 1993, 1: 347-414
doi: 10.4310/CAG.1993.v1.n3.a2
|
[18] |
Schoen R. Variational theory for the total scalar curvature functional for Riemannian metrics and related topics//Lecture Notes in Math, Vol 1365. Berlin: Springer-Verlag, 1989: 120-154
|
[19] |
Whyburn G T. Topological Analysis. Princeton: Princeton University Press, 1958
|
[20] |
Yamabe H. On the deformation of Riemannian structures on compact manifolds. Osaka Math J, 1960, 12: 21-37
|