数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1391-1396.

• • 上一篇    下一篇

单位球上 Yamabe 方程的全局分歧

代国伟1,*(),高思雨1,马如云2   

  1. 1大连理工大学数学科学学院 辽宁大连 116024
    2西安电子科技大学数学与统计学院 西安 710071
  • 收稿日期:2022-08-14 修回日期:2023-03-23 出版日期:2023-10-26 发布日期:2023-08-09
  • 通讯作者: 代国伟 E-mail:daiguowei@dlut.edu.cn
  • 基金资助:
    国家自然科学基金(11871129)

Global Bifurcation for the Yamabe Equation on the Unit Sphere

Dai Guowei1,*(),Gao Siyu1,Ma Ruyun2   

  1. 1School of Mathematical Sciences, Dalian University of Technology, Liaoning Dalian 116024
    2School of Mathematical and Statistics, Xidian University, Xi'an 710071
  • Received:2022-08-14 Revised:2023-03-23 Online:2023-10-26 Published:2023-08-09
  • Contact: Guowei Dai E-mail:daiguowei@dlut.edu.cn
  • Supported by:
    NSFC(11871129)

摘要:

该文研究了 N 维单位球面 SN 上的Yamabe方程

ΔSNv+λv=vN+2N2.

通过分歧的方法, 对于任意 k1, 证明了该方程对于任意的 λ>λk:=(k+N1)(N2)/4 都至少有一个非常数解 vk, 使得 vkλ1/(N1) 正好有 k 个零点, 并且它们在 (1,1) 中都是单根, 其中 N 是 Sobolev 临界指数. 在应用部分, 得到了当 n4 时, RN 上非线性椭圆方程非径向解的存在性. 此外, 还得到了乘积流形中一个流形是单位球时的 Yamabe 问题的全局分歧结果.

关键词: 分歧, Yamabe 方程, 非径向解

Abstract:

We study the Yamabe equation on the N-dimensional unit sphere SN

ΔSNv+λv=vN+2N2.

By bifurcation technique, for each k1, we prove that this equation has at least one non-constant solution vk for any λ>λk:=(k+N1)(N2)/4 such that vkλ1/(N1) has exactly k zeroes, all of them are in (1,1) and are simple, where N is the sobolev critical exponent. As application, we obtain the existence of non-radial solutions of a nonlinear elliptic equation on RN with n4. Moreover, we also obtain the global bifurcation results of the Yamabe problem in product manifolds with one of the manifold is the unit sphere.

Key words: Bifurcation, Yamabe equation, Non-radial solutions

中图分类号: 

  • O177.91