数学物理学报 ›› 2023, Vol. 43 ›› Issue (5): 1391-1396.

• • 上一篇    下一篇

单位球上 Yamabe 方程的全局分歧

代国伟1,*(),高思雨1,马如云2   

  1. 1大连理工大学数学科学学院 辽宁大连 116024
    2西安电子科技大学数学与统计学院 西安 710071
  • 收稿日期:2022-08-14 修回日期:2023-03-23 出版日期:2023-10-26 发布日期:2023-08-09
  • 通讯作者: 代国伟 E-mail:daiguowei@dlut.edu.cn
  • 基金资助:
    国家自然科学基金(11871129)

Global Bifurcation for the Yamabe Equation on the Unit Sphere

Dai Guowei1,*(),Gao Siyu1,Ma Ruyun2   

  1. 1School of Mathematical Sciences, Dalian University of Technology, Liaoning Dalian 116024
    2School of Mathematical and Statistics, Xidian University, Xi'an 710071
  • Received:2022-08-14 Revised:2023-03-23 Online:2023-10-26 Published:2023-08-09
  • Contact: Guowei Dai E-mail:daiguowei@dlut.edu.cn
  • Supported by:
    NSFC(11871129)

摘要:

该文研究了 $N$ 维单位球面 $\mathbb{S}^N$ 上的Yamabe方程

$\begin{equation} -\Delta_{\mathbb{S}^N} v+\lambda v=v^{\frac{N+2}{N-2}}.\nonumber \end{equation}$

通过分歧的方法, 对于任意 $k\geq1$, 证明了该方程对于任意的 $\lambda>\lambda_k:=(k+N-1)(N-2)/4$ 都至少有一个非常数解 $v_k$, 使得 $v_k-\lambda^{1/(N^{*}-1)}$ 正好有 $k$ 个零点, 并且它们在 $(-1, 1)$ 中都是单根, 其中 $N^{*}$ 是 Sobolev 临界指数. 在应用部分, 得到了当 $n\geq4$ 时, $\mathbb{R}^N$ 上非线性椭圆方程非径向解的存在性. 此外, 还得到了乘积流形中一个流形是单位球时的 Yamabe 问题的全局分歧结果.

关键词: 分歧, Yamabe 方程, 非径向解

Abstract:

We study the Yamabe equation on the $N$-dimensional unit sphere $\mathbb{S}^N$

$\begin{equation} -\Delta_{\mathbb{S}^N} v+\lambda v=v^{\frac{N+2}{N-2}}.\nonumber \end{equation}$

By bifurcation technique, for each $k\geq1$, we prove that this equation has at least one non-constant solution $v_k$ for any $\lambda>\lambda_k:=(k+N-1)(N-2)/4$ such that $v_k-\lambda^{1/(N^{*}-1)}$ has exactly $k$ zeroes, all of them are in $(-1, 1)$ and are simple, where $N^{*}$ is the sobolev critical exponent. As application, we obtain the existence of non-radial solutions of a nonlinear elliptic equation on $\mathbb{R}^N$ with $n\geq4$. Moreover, we also obtain the global bifurcation results of the Yamabe problem in product manifolds with one of the manifold is the unit sphere.

Key words: Bifurcation, Yamabe equation, Non-radial solutions

中图分类号: 

  • O177.91