[1] |
UNAIDS: AIDS by the numbers in 2020. https://www.unaids.org/en
|
[2] |
Cuadros D F, Li J, Branscum A J, et al. Mapping the spatial variability of HIV infection in Sub-Saharan Africa: Efective information for localized HIV prevention and control. Sci Rep, 2017, 7: 9093
doi: 10.1038/s41598-017-09464-y
pmid: 28831171
|
[3] |
Ayalew K A, Manda S, Cai B. A comparison of Bayesian spatial models for HIV mapping in South Africa. Int J Environ. Res Public Health, 2021, 18(21): 11215
doi: 10.3390/ijerph182111215
|
[4] |
Wu P, Zhao H. Mathematical analysis of an age-structured HIV/AIDS epidemic model with HAART and spatial diffusion. Nonlinear Analysis: RWA, 2021, 60: 103289
doi: 10.1016/j.nonrwa.2021.103289
|
[5] |
Zhao H, Wu P, Ruan S. Dynamic analysis and optimal control three-age-class HIV/AIDS epidemic model in China. Disc Conti Dyn Syst Seri B, 2020, 25(9): 3491-3521
|
[6] |
Wu P, Zhao H. Dynamical analysis of a nonlocal delayed and diffusive HIV latent infection model with spatial heterogeneity. J Franklin Institute, 2021, 358(10): 5552-5587
doi: 10.1016/j.jfranklin.2021.05.014
|
[7] |
Gao Y, Wang J. Threshold dynamics of a delayed nonlocal reaction-diffusion HIV infection model with both cell-free and cell-to-cell transmissions. J Math Anal Appl, 2020, 488(1): 124047
doi: 10.1016/j.jmaa.2020.124047
|
[8] |
Ge Q, Wang X, Rong L. A delayed reaction-diffusion viral infection model with nonlinear incidences and cell-to-cell transmission. International Journal of Biomathematics, 2021, 14(8): 2150100
doi: 10.1142/S179352452150100X
|
[9] |
Wang W, Wang X, Feng Z. Time periodic reaction-diffusion equations for modeling 2-LTR dynamics in HIV-infected patients. Nonlinear Analysis: Real World Applications, 2021, 57: 103184
doi: 10.1016/j.nonrwa.2020.103184
|
[10] |
王晶囡, 杨德中. 具有时滞扩散效应的病原体-免疫模型的稳定性及分支. 数学物理学报, 2021, 41A(4): 1204-1217
|
|
Wang J N, Yang D Z. Stability and Bifurcation analysis of a delayed diffusive pathogen-immune model. Acta Math Sci, 2021, 41A(4): 1204-1217
|
[11] |
Chekroun A, Kuniya T. An infection age-space structured SIR epidemic model with Neumann boundary condition. Appl Anal, 2020, 99: 1972-1985
doi: 10.1080/00036811.2018.1551997
|
[12] |
Yang J, Xu R, Li J. Threshold dynamics of an age-space structured brucellosis disease model with Neumann boundary condition. Nonlinear Analysis: RWA, 2019, 50: 192-217
doi: 10.1016/j.nonrwa.2019.04.013
|
[13] |
liu P, Li H. Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Math Biosci Eng, 2020, 17: 7248-7273
doi: 10.3934/mbe.2020372
pmid: 33378896
|
[14] |
Wang J, Zhang R, Gao Y. Global threshold dynamics of an infection age-space structured HIV infection model with Neumann boundary condition. J Dyn Diff Equat, 2021, https://doi.org/10.1007/s10884-021-10086-2
|
[15] |
An Q, Wang C, Wang H. Analysis of a spatial memory model with nonlocal maturation delay and hostile boundary condition. Discrete Contin Dyn Syst Ser A, 2020, 40(10): 5845-5868
doi: 10.3934/dcds.2020249
|
[16] |
Yi T, Zou X. On Dirichlet problem for a class of delayed reaction-diffusion equations with spatial non-locality. J Dyn Diff Equat, 2013 25(4): 959-979
|
[17] |
Chekroun A, Kuniya T. Global threshold dynamics of an infection age-structured SIR epidemic model with diffusion under the Dirichlet boundary condition. J Differential Equations, 2020, 269: 117-148
doi: 10.1016/j.jde.2020.04.046
|
[18] |
Wang X, Sun H, Yang J. Temporal-spatial analysis of an age-space structured foot-and-mouth disease model with Dirichlet boundary condition. Chaos, 2021, 31: 053120
doi: 10.1063/5.0048282
|
[19] |
Shen M, Xiao Y, Rong L. Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics. Math Biosci, 2015, 263: 37-50
doi: 10.1016/j.mbs.2015.02.003
pmid: 25686694
|
[20] |
Gao Y, Wang J. Threshold dynamics of a delayed nonlocal reaction-diffusion HIV infection model with both cell-free and cell-to-cell transmissions. J Math Anal Appl, 2020, 488: 124047
doi: 10.1016/j.jmaa.2020.124047
|
[21] |
Yang J, Jin Z, Xu F. Threshold dynamics of an age-space structured SIR model on heterogeneous environment. Appl Math Lett, 2019, 96: 69-74
doi: 10.1016/j.aml.2019.03.009
|
[22] |
Ito S. Diffusion Equations. Providence, RI: American Mathematical Society, 1992
|
[23] |
Mckenna P J, Walter W. On the Dirichlet problem for elliptic systems. Appl Anal, 1986, 21: 207-224
doi: 10.1080/00036818608839592
|
[24] |
Protter M H, Weinberger H F. Maximum Principle in Differential Equations. New York: Springer-Verlag, 1984
|
[25] |
Wang W, Zhao X Q. Spatial invasion threshold of Lyme disease. SIAM J Appl Math, 2015 73: 1142-1170
|
[26] |
Smith H L. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Providence, RI: American Mathematical Society, 1995
|
[27] |
Chatelin F. The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators. SIAM Rev, 1981, 23: 495-522
doi: 10.1137/1023099
|