数学物理学报 ›› 2023, Vol. 43 ›› Issue (3): 829-854.
收稿日期:
2022-07-25
修回日期:
2022-10-10
出版日期:
2023-06-26
发布日期:
2023-06-01
通讯作者:
秦毅
E-mail:210911017@sust.edu.cn;jianli@sust.edu.cn;liyizz@nwu.edu.cn;4545@sust.edu.cn
作者简介:
王阳,E-mail: 基金资助:
Wang Yang1(),Li Jian1(),Li Yi2(),Qin Yi1,*()
Received:
2022-07-25
Revised:
2022-10-10
Online:
2023-06-26
Published:
2023-06-01
Contact:
Yi Qin
E-mail:210911017@sust.edu.cn;jianli@sust.edu.cn;liyizz@nwu.edu.cn;4545@sust.edu.cn
Supported by:
摘要:
首先, 在非定常 Stokes/Darcy 模型的线性多步法的一阶
中图分类号:
王阳,李剑,李祎,秦毅. 非定常 Stokes/Darcy 模型一种新的time filter 算法的分析[J]. 数学物理学报, 2023, 43(3): 829-854.
Wang Yang,Li Jian,Li Yi,Qin Yi. Analysis of a New Time Filter Algorithm for the Unsteady Stokes/Darcy Model[J]. Acta mathematica scientia,Series A, 2023, 43(3): 829-854.
[1] |
Ervin V J. Approximation of coupled Stokes-Darcy flow in an axisymmetric domain. Computer Methods in Applied Mechanics and Engineering, 2013, 258: 96-108
doi: 10.1016/j.cma.2013.02.004 |
[2] |
Hou Y R, Qin Y. On the solution of coupled Stokes/Darcy model with Beavers-Joseph interface condition. Computers & Mathematics with Applications, 2019, 77(1): 50-65
doi: 10.1016/j.camwa.2018.09.011 |
[3] |
Cao Y Z, Gunzburger M, Hu X L, et al. Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM Journal on Numerical Analysis, 2010, 47(6): 4239-4256
doi: 10.1137/080731542 |
[4] |
Kanschat G, Riviére B. A strongly conservative finite element method for the coupling of Stokes and Darcy flow. Journal of Computational Physics, 2010, 229(17): 5933-5943
doi: 10.1016/j.jcp.2010.04.021 |
[5] | Glowinshi R. Finite element methods for incompressible viscous flow. Handbook of Numerical Analysis, 2003, 9: 3-1176 |
[6] |
Lipnikov K, Vassilev D, Yotov I. Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numerische Mathematik, 2014, 126(2): 321-360
doi: 10.1007/s00211-013-0563-3 |
[7] |
Chen W B, Wang F, Wang Y Q. Weak Galerkin method for the coupled Darcy-Stokes flow. IMA Journal of Numerical Analysis, 2016, 36(2): 897-921
doi: 10.1093/imanum/drv012 |
[8] |
Girault V, Riviére B. DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM Journal on Numerical Analysis, 2009, 47(3): 2052-2089
doi: 10.1137/070686081 |
[9] |
Markus S, Houstis E N, Catlin A C, et al. An agent-based netcentric framework for multidisciplinary problem solving environments (MPSE). Inter J Comput Engineering Sci, 2000, 1(1): 33-60
doi: 10.33545/26633582 |
[10] |
Mu M. Solving composite problems with interface relaxation. SIAM Journal on Scientific Computing, 1999, 20(4): 1394-1416
doi: 10.1137/S1064827597321180 |
[11] |
Gatica G N, Oyarzúa R, Sayas F J. A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled problem. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21/22): 1877-1891
doi: 10.1016/j.cma.2011.02.009 |
[12] |
Layton W J, Schieweck F, Yotov I. Coupling fluid flow with porous media flow. SIAM Journal on Numerical Analysis, 2002, 40(6): 2195-2218
doi: 10.1137/S0036142901392766 |
[13] |
He X M, Li J, Lin Y P, et al. A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition. SIAM J Sci Comput, 2015, 37(5): S264-S290
doi: 10.1137/140965776 |
[14] |
Cao Y Z, Gunzburger M, He X M, et al. Robin-Robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition. Numer Math, 2011, 117(4): 601-629
doi: 10.1007/s00211-011-0361-8 |
[15] |
Chen W B, Gunzburger M, Hua F, et al. A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system. SIAM Journal on Numerical Analysis, 2011, 49(3): 1064-1084
doi: 10.1137/080740556 |
[16] |
Hou Y R. Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. Applied Mathematics Letters, 2016, 57: 90-96
doi: 10.1016/j.aml.2016.01.007 |
[17] |
Qin Y, Hou Y R. Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Navier-Stokes/Darcy model. Acta Mathematica Scientia, 2018, 38(4): 1361-1369
doi: 10.1016/S0252-9602(18)30819-1 |
[18] |
Zuo L Y, Du G Z. A multi-grid technique for coupling fluid flow with porous media flow. Computers & Mathematics with Applications, 2018, 75(11): 4012-4021
doi: 10.1016/j.camwa.2018.03.010 |
[19] |
Zuo L Y, Hou Y R. A two-grid decoupling method for the mixed Stokes-Darcy model. Journal of Computational and Applied Mathematics, 2015, 275: 139-147
doi: 10.1016/j.cam.2014.08.008 |
[20] |
Cao Y Z, Gunzburger M, Hua F, et al. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Communications in Mathematical Sciences, 2010, 8(1): 1-25
doi: 10.4310/CMS.2010.v8.n1.a2 |
[21] |
Cao Y Z, Gunzburger M, He X M, et al. Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math Comput, 2014, 83(288): 1617-1644
doi: 10.1090/mcom/2014-83-288 |
[22] |
Cao Y Z, Gunzburger M, Hu X L, et al. Finite element approximation for time-dependent Stokes-Darcy flow with Beavers-Joseph interface boundary condition. SIAM J Numer Anal, 2010, 47(6): 4239-4256
doi: 10.1137/080731542 |
[23] |
Li Y, Hou Y R. A second-order partitioned method with different subdomain time steps for the evolutionary Stokes-Darcy system. Mathematical Methods in the Applied Sciences, 2018, 41(5): 2178-2208
doi: 10.1002/mma.v41.5 |
[24] |
Layton W J, Tran H, Xiong X. Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems. Journal of Computational and Applied Mathematics, 2012, 236(13): 3198-3217
doi: 10.1016/j.cam.2012.02.019 |
[25] |
Layton W J, Tran H, Trenchea C. Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J Numer Anal, 2013, 51(1): 248-272
doi: 10.1137/110834494 |
[26] |
Shan L, Zheng H B, Layton W J. A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model. Numer Meth Partial Differ Equ, 2013, 29(2): 549-583
doi: 10.1002/num.v29.2 |
[27] | Guzel A, Layton W J. Time filters increase accuracy of the fully implicit method. BIT Numerical Mathematic, 2018, 58(2): 301-315 |
[28] |
Li Y, Hou Y R, Layton W J. Adaptive partitioned methods for the time-accurate approximation of the evolutionary Stokes-Darcy system. Computer Meth Appl Mech Engineering, 2020, 364: 112923
doi: 10.1016/j.cma.2020.112923 |
[29] |
Qin Y, Hou Y R. The time filter for the non-stationary coupled Stokes/Darcy model. Applied Numerical Mathematics, 2019, 146: 260-275
doi: 10.1016/j.apnum.2019.07.015 |
[30] | Girault V, Raviart P A. Finite Element Approximation of the Navier-Stokes Equations. Berlin: Springer-Verlag, 1981 |
[31] |
Mu M, Zhu X H. Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Mathematics of Computation, 2010, 79(270): 707-731
doi: 10.1090/S0025-5718-09-02302-3 |
[32] | Li J, Lin X L, Chen Z X. Finite Volume Methods for the Incompressible Navier-Stokes Equations. Berlin: Springer-Verlag, 2021 |
[33] | 李剑. 不可压缩 Navier-Stokes 方程数值方法. 北京: 科学出版社, 2019 |
Li J. Numerical Methods for the Incompressible Navier-Stokes Equations. Beijing: Science Press, 2019 | |
[34] | 李剑, 白云霄, 赵昕. 数学物理方程的现代数值方法. 北京: 科学出版社, 2022 |
Li J, Bai Y X, Zhao X. Modern Numerical Methods for Mathematical Physics Equations. Beijing: Science Press, 2022 | |
[35] |
Qin Y, Wang Y S, Li J. A variable time step time filter algorithm for the geothermal system. SIAM Journal on Numerical Analysis, 2022, 60(5): 2781-2806
doi: 10.1137/21M1464828 |
[36] |
Cao L L, He Y N, Li J. A parallel Robin-Robin domain decomposition method based on modified characteristic FEMs for the time-dependent dual-porosity-Navier-Stokes model with the Beavers-Joseph interface condition. Journal of Scientific Computing, 2022, 90(1): 1-34
doi: 10.1007/s10915-021-01681-y |
[37] |
Jiang N, Qiu C. An efficient ensemble algorithm for numerical approximation of stochastic Stokes-Darcy equations. Computer Methods in Applied Mechanics and Engineering, 2019, 343: 249-275
doi: 10.1016/j.cma.2018.08.020 |
[38] |
Li Y, Hou Y R, Rong Y. A second-order artificial compression method for the evolutionary Stokes-Darcy system. Numerical Algorithms, 2020, 84(3): 1019-1048
doi: 10.1007/s11075-019-00791-x |
[39] | Li Y, Hou Y R. Error estimates of second-order decoupled scheme for the evolutionary Stokes-Darcy system. Applied Numerical Mathematics, 2020, 154: 129-148 |
[1] | 迟晓妮,曾荣,刘三阳,朱志斌. 对称锥权互补问题的正则化非单调非精确光滑牛顿法[J]. 数学物理学报, 2021, 41(2): 507-522. |
[2] | 汤京永, 贺国平. 二阶锥规划的一步光滑牛顿法[J]. 数学物理学报, 2012, 32(4): 768-778. |
[3] | 马昌凤 陈新美. 混合互补问题牛顿型算法的二阶收敛性[J]. 数学物理学报, 2000, 20(2): 145-151. |
|