数学物理学报 ›› 2023, Vol. 43 ›› Issue (3): 680-690.

• • 上一篇    下一篇

一类与 Klein-Gordon-Maxwell 问题有关的方程组的基态解的存在性

李易娴,张正杰*()   

  1. 华中师范大学数学与统计学院 武汉430079
  • 收稿日期:2021-05-18 修回日期:2022-01-10 出版日期:2023-06-26 发布日期:2023-06-01
  • 通讯作者: 张正杰 E-mail:zjz@mail.ccnu.edu.cn
  • 基金资助:
    国家自然科学基金(11771166)

The Existence of Ground State Solutions for a Class of Equations Related to Klein-Gordon-Maxwell Systems

Li Yixian,Zhang Zhengjie*()   

  1. School of Mathematics and Statistics Central China Normal University, Wuhan 430079
  • Received:2021-05-18 Revised:2022-01-10 Online:2023-06-26 Published:2023-06-01
  • Contact: Zhengjie Zhang E-mail:zjz@mail.ccnu.edu.cn
  • Supported by:
    NSFC(11771166)

摘要:

该文利用临界点理论、变分法以及集中紧性原理等理论方法, 研究如下一类非线性方程组的基态解的存在性.

$\begin{eqnarray*} \left \{ \begin{array}{l} -\Delta u+(m+2\omega\phi)u=A(x)|u|^{p-2}u,\\ -\Delta\phi+\lambda\phi=\omega u^{2}, \lim\limits_{|x|\rightarrow\infty}u(x)=0, \lim\limits_{|x|\rightarrow\infty}\phi(x)=0. \end{array} \right. \end{eqnarray*}$

其中 $u\in H^{1}({\Bbb R}^{3})$, $\phi\in H^{1}({\Bbb R}^{3})$, $\lambda>0$, $m$$\omega$ 均为正常数. 如果$A(x)$ 是正常数, 当 $4 时, 上述问题存在基态解 $(u, \phi)$; 如果 $A(x)$ 是非常值函数, 当 $4 时, 在适当的情况下上述问题存在基态解 $(u, \phi)$.

关键词: Klein-Gordon-Maxwell 方程, 集中紧性原理, 变分方法, 临界点理论, 基态解

Abstract:

In this paper, we will study the existence of ground state solutions for a class of nonlinear equations by using the theory of compactness of concentration, variational method and critical point theory.

$\begin{eqnarray*} \left \{ \begin{array}{l} -\Delta u+(m+2\omega\phi)u=A(x)|u|^{p-2}u,\\ -\Delta\phi+\lambda\phi=\omega u^{2}, \lim\limits_{|x|\rightarrow\infty}u(x)=0, \lim\limits_{|x|\rightarrow\infty}\phi(x)=0. \end{array} \right. \end{eqnarray*}$

where $u\in H^{1}({\Bbb R}^{3})$, $\phi\in H^{1}({\Bbb R}^{3})$, $\lambda>0$, $m$ and $\omega$ are positive constants. Then we study the problem assuming the follwwing two cases on $A(x)$.

If $A(x)$ is a positive constant function, we prove that the ground state solution $(u, \phi)$ exists for any $p\in(4,6)$; if $A(x)$ is not a constant function, we prove that the ground state solution $(u, \phi)$ exists for any $p\in(4,6)$ under the right conditions.

Key words: Klein-Gordon-Maxwell equation, Principle of concentration compactness, Variational methods, Critical point theory, Ground state solution

中图分类号: 

  • O175.23