数学物理学报 ›› 2022, Vol. 42 ›› Issue (6): 1898-1921.

• 论文 • 上一篇    

复矩阵截断奇异值分解的一类混合算法

张玉心1,侯文婷1,周学林2,1,*(),李姣芬1   

  1. 1 桂林电子科技大学数学与计算科学学院, 广西应用数学中心(桂林电子科技大学), 广西高校数据分析与计算重点实验室 广西桂林 541004
    2 云南大学数学与统计学院 昆明 650000
  • 收稿日期:2021-06-19 出版日期:2022-12-26 发布日期:2022-12-16
  • 通讯作者: 周学林 E-mail:zhouxuelin0309@163.com
  • 基金资助:
    国家自然科学基金(12261026);国家自然科学基金(11961012);国家自然科学基金(12201149);广西科技基地和人才专项(2021AC06001);2018年广西壮族自治区大学生创新训练项目(201810595215);桂林电子科技大学研究生教育创新计划项目(2022YCXS142);广西自动检测技术与仪器重点实验室基金(YQ21103);广西自动检测技术与仪器重点实验室基金(YQ22106)

A Hybrid Algorithm for Solving Truncated Complex Singular Value Decomposition

Yuxin Zhang1,Wenting Hou1,Xuelin Zhou2,1,*(),Jiaofen Li1   

  1. 1 School of Mathematics and Computational Science, Center for Applied Mathematics of Guangxi(GUET), Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guangxi Guilin 541004
    2 School of Mathematics and Statistics, Yunan University, Yunan Kunming 650000
  • Received:2021-06-19 Online:2022-12-26 Published:2022-12-16
  • Contact: Xuelin Zhou E-mail:zhouxuelin0309@163.com
  • Supported by:
    the National Natural Science Foundation(12261026);the National Natural Science Foundation(11961012);the National Natural Science Foundation(12201149);the Special Fund for Science and Technological Bases and Talents of Guangxi(2021AC06001);the Guangxi College Student Innovation and Entrepreneurship Training Program(201810595215);the GUET Graduate Innovation Project(2022YCXS142);the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ21103);the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ22106)

摘要:

截断奇异值分解是一类非常重要的矩阵分解, 其在病态模型问题分析等领域有广泛的应用.该文主要研究复矩阵截断奇异值分解的有效算法, 将问题转化为复Stiefel乘积流形上的黎曼优化问题, 进而设计基于乘积流形的黎曼混合牛顿法求解.为有效求解黎曼牛顿方程, 从降低系统维数和简化计算入手, 通过克罗内克积和复矩阵拉直算子将其转化为易于求解的标准实对称线性方程组.数值实验和数值比较验证该文所提算法针对复矩阵截断奇异值分解问题是高效可行的.

关键词: 复矩阵, 截断奇异值分解, 黎曼牛顿法, 混合算法

Abstract:

This paper develops an efficient approach for solving the truncated complex singular value decomposition, which is widely applied in ill-posed model problems. The original problem can be formulated as an optimization problem on a corresponding complex product Stiefel manifold. A hybrid Riemannian Newton-type algorithm with globally and quadratically convergent is proposed to solve the underlying problem, in which the involved Newton's equation is transformed into a standard symmetric linear system with a dimension reduction. Numerical experiments and detailed comparisons are provided to illustrate the efficiency of the proposed method.

Key words: Complex matrix, Truncated singular value decomposition, Riemannian Newton's method, Hybrid Algorithm

中图分类号: 

  • O151.1