1 |
Hansen P C . Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM Journal on Scientific and Statistical Computing, 1990, 11 (3): 503- 518
doi: 10.1137/0911028
|
2 |
Noschese S , Reichel L . A modified truncated singular value decomposition method for discrete ill-posed problems. Numerical Linear Algebra with Applications, 2014, 21 (6): 813- 822
doi: 10.1002/nla.1938
|
3 |
余景景, 刘芳, 焦李成等. 截断奇异值分解的生物发光断层成像重建问题. 西北大学学报(自然科学版), 2009, 39(5): 755-760
|
|
Yu J, Liu F, Jiao L, He X. Research on the reconstruction for bioluminescence tomography using truncated singular value decomposition method. Journal of Northwest University (Natural Science Edition), 2009, 39(5): 755-760
|
4 |
Doğu S , Akıncı M N , Çayören M , Akduman İ . Truncated singular value decomposition for through-the-wall microwave imaging application. IET Microwaves, Antennas & Propagation, 2019, 14 (4): 260- 267
|
5 |
Francischello R , Geppi M , Flori A , et al. Application of low-rank approximation using truncated singular value decomposition for noise reduction in hyperpolarized 13C NMR spectroscopy. NMR in Biomedicine, 2021, 34 (5): e4285
|
6 |
Sato H . Riemannian Optimization and Its Applications. Switzerland: Springer Nature, 2021
|
7 |
Sato H , Iwai T . A Riemannian optimization approach to the matrix singular value decomposition. SIAM Journal on Optimization, 2013, 23 (1): 188- 212
doi: 10.1137/120872887
|
8 |
Sato H. Riemannian conjugate gradient method for complex singular value decomposition problem. 53rd IEEE Conference on Decision and Control, 2015, pages 5849-5854
|
9 |
Sato H, Iwai T. A complex singular value decomposition algorithm based on the Riemannian Newton method[C]//52nd IEEE Conference on Decision and Control. Firenze: IEEE, 2013: 2972-2978
|
10 |
Aihara K , Sato H . A matrix-free implementation of Riemannian Newton's method on the Stiefel manifold. Optimization Letters, 2017, 11, 1729- 1741
doi: 10.1007/s11590-016-1090-9
|
11 |
Xu W W , Li W , Zhu L , Huang X P . The analytic solutions of a class of constrained matrix minimization and maximization problems with applications. SIAM Journal on Optimization, 2019, 29 (2): 1657- 1686
doi: 10.1137/17M1140777
|
12 |
Wen Z , Yin W . A feasible method for optimization with orthogonality constraints. Mathematical Programming, 2013, 142 (1/2): 397- 434
|
13 |
Absil P A , Mahony R , Sepulchre R . Optimization Algorithms on Matrix Manifolds. Princeton: Princeton University Press, 2008,
|
14 |
Hu J , Liu X , Wen Z W , Yuan Y X . A brief introduction to manifold optimization. Journal of the Operations Research Society of China, 2020, 8 (2): 199- 248
doi: 10.1007/s40305-020-00295-9
|
15 |
Absil P A, Mahony R, Trumpf J. An extrinsic look at the Riemannian Hessian[C]//International Conference on Geometric Science of Information. Berlin: Springer, 2013: 361-368
|
16 |
Henderson H V , Searle S R . The vec-permutation matrix, the vec operator and Kronecker products: A review. Linear and Multilinear Algebra, 1981, 9 (4): 271- 288
doi: 10.1080/03081088108817379
|
17 |
Yuan S , Liao A , Lei Y . Least squares Hermitian solution of the matrix equation (AXB, CXD)=(E, F) with the least norm over the skew field of quaternions. Mathematical and Computer Modelling, 2008, 48 (1/2): 91- 100
|
18 |
Saad Y . Iterative Methods for Sparse Linear Systems. Philadelphia: SIAM, 2003
|
19 |
Boumal N , Mishra B , Absil P A , Sepulchre R . Manopt, a Matlab toolbox for optimization on manifolds. Journal of Machine Learning Research, 2014, 15 (1): 1455- 1459
|
20 |
Zhu X . A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Computational Optimization and Applications, 2017, 67 (1): 73- 110
doi: 10.1007/s10589-016-9883-4
|
21 |
Dai Y . A nonmonotone conjugate gradient algorithm for unconstrained optimization. Journal of System Science and Complexity, 2002, 15, 139- 145
|
22 |
Li J F , Li W , Vong S W , et al. A Riemannian optimization approach for solving the generalized eigenvalue problem for nonsquare matrix pencils. Journal of Scientific Computing, 2020, 82 (3): 1- 43
|