1 |
Damm T , Grüne L , Stieler M , Worthmann K . An exponential turnpike theorem for dissipative discrete time optimal control problems. SIAM Journal on Control and Optimization, 2014, 52 (3): 1935- 1957
doi: 10.1137/120888934
|
2 |
Anderson B , Kokotovic P V . Optimal control problems over large time intervals. Automatica, 1987, 23 (3): 355- 363
doi: 10.1016/0005-1098(87)90008-2
|
3 |
Trélat E , Zhang C , Zuazua E . Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces. SIAM Journal on Control and Optimization, 2018, 56 (2): 1222- 1252
doi: 10.1137/16M1097638
|
4 |
Carlson D A , Leizarowitz A , Haurie A . Infinite Horizon Optimal Control. Berlin: Springer, 1991
|
5 |
Trélat E , Zuazua E . The turnpike property in finite-dimensional nonlinear optimal control. Journal of Differential Equations, 2015, 258 (1): 81- 114
doi: 10.1016/j.jde.2014.09.005
|
6 |
Mckenzie W . Turnpike theorems for a generalized Leontief model. Econometrica, 1963, 31: 165- 180
doi: 10.2307/1910955
|
7 |
Zuazua E . Large time control and turnpike properties for wave equations. Annual Reviews in Control, 2017, 44: 199- 210
doi: 10.1016/j.arcontrol.2017.04.002
|
8 |
Faulwasser T , Korda M , Jones C N , Bonvin D . On turnpike and dissipativity properties of continuous-time optimal control problems. Automatica, 2017, 81: 297- 304
doi: 10.1016/j.automatica.2017.03.012
|
9 |
Gugat M , Trélat E , Zuazua E . Optimal Neumann control for the 1D wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property. Systems Control Letters, 2016, 90: 61- 70
doi: 10.1016/j.sysconle.2016.02.001
|
10 |
Trélat E , Zhang C . Integral and measure-turnpike property for infinite dimensional optimal control problems. Mathematics of Control, Signals, and Systems, 2018, 30 (1): 3- 37
doi: 10.1007/s00498-018-0209-1
|
11 |
Weglarz J . Optimization-Theory and applications: Problems with ordinary differential equations. European Journal of Operational Research, 1984, 16 (2): 277
|
12 |
Li X , Yong J . Optimal Control Theory for Infinite Dimensional Systems. Boston: Birkhauser, 1995
|
13 |
Lukes D L . Optimal regulation of nonlinear dynamical systems. Society for Industrial and Applied Mathematics, 1968, 7 (1): 37
|
14 |
Sakamoto , Noboru . Analysis of the Hamilton-Jacobi Equation in Nonlinear Control Theory by Simplectic Geometry. SIAM Journal on Control and Optimization, 2002, 40 (6): 1924- 1937
doi: 10.1137/S0363012999362803
|
15 |
Agrachev A A , Sachkov Y . Control Theory from the Geometric Viewpoint. Berlin: Springer, 2004
|
16 |
Pontryagin L S , Boltyanskii V G , Gamkrelidza R V , Mishchenko E F . The Mathematical Theory of Optimal Processes. New York: John Wiley, 1962
|
17 |
Allaire G , Münch A , Periago F . Long time behavior of a two-phase optimal design for the heat equation. Society for Industrial and Applied Mathematics, 2010, 48 (8): 5333- 5356
|
18 |
Kwakernaak H , Sivan R . Linear optimal control systems. Journal of Dynamic Systems Measurement and Control, 1974, 96 (3): 373- 374
|
19 |
Abou-Kandil H , Freiling G , Ionescu V , Jank G . Matrix Riccati Equations in Control and Systems Theory. Basel: Birkhauser, 2003: 551- 572
|
20 |
Zabczyk J . Mathematical Control Theory: An Introduction. Boston: Birkhauser, 1992
|