数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 228-244.
收稿日期:
2020-10-14
出版日期:
2022-02-26
发布日期:
2022-02-23
通讯作者:
何泽荣
E-mail:zrhe@hdu.edu.cn
基金资助:
Received:
2020-10-14
Online:
2022-02-26
Published:
2022-02-23
Contact:
Zerong He
E-mail:zrhe@hdu.edu.cn
Supported by:
摘要:
该文研究一类带有年龄等级结构的种群竞争模型的最优收获强度控制问题.证明了最优策略的存在性,关于含有分布式和边界控制函数的偏微分积分系统建立了一个新的连续性定理,据此并运用法锥和共轭系统技巧对最优策略进行了精确刻画.此外,也展示了一些数值实验结果,考察了价格函数对最优收益的影响.
中图分类号:
何泽荣,周楠. 具有年龄等级结构的种群竞争系统的最优收获控制[J]. 数学物理学报, 2022, 42(1): 228-244.
Zerong He,Nan Zhou. Optimal Harvesting in a Competing System of Hierarchical Age-Structured Populations[J]. Acta mathematica scientia,Series A, 2022, 42(1): 228-244.
1 | Getz W M , Haight R G . Population Harvesting: Demographic Models of Fish, Forest, and Animal Resources. Princeton: Princeton University Press, 1989 |
2 | Aniţa S . Analysis and Control of Age-Dependent Population Dynamics. Dordrecht: Kluwer Academic Publishers, 2000 |
3 | Lenhart S , Workman J T . Optimal Control Applied to Biological Models. New York: Taylor & Francis Group, 2007 |
4 | Leung A W . Nonlinear System of Partial Differential Equations: Applications to Life and Physical Sciences. Beijing: World Scientific Publishing, 2009 |
5 | Boucekkine R , Hritoenko N , Yatsenko Y . Optimal Control of Age-Structured Populations in Economy, Demography, and the Environment. New York: Routledge, 2011 |
6 |
Rorres C , Fair W . Optimal harvesting policy for an age-specific population. Mathematical Biosciences, 1975, 24: 31- 47
doi: 10.1016/0025-5564(75)90065-6 |
7 |
Brokate M . Pontryagin's principle for control problems in age-dependent population dynamics. J Math Biology, 1985, 23: 75- 101
doi: 10.1007/BF00276559 |
8 |
Medhin N G . Optimal harvesting in age-structured populations. J Optim Theor Appl, 1992, 74 (3): 413- 423
doi: 10.1007/BF00940318 |
9 |
Cañada A , Gámez J L , Montero J A . Study of an optimal control problem for diffusive nonlinear elliptic equations of Logistic type. SIAM J Control Optim, 1998, 36 (4): 1171- 1189
doi: 10.1137/S0363012995293323 |
10 |
Yamauchi A , Matsummiya Y , Iwasa Y . Optimal age-dependent sustainable harvesting of natural resouece populations: Sustainability value. Res Popul Ecol, 1997, 39 (2): 139- 148
doi: 10.1007/BF02765259 |
11 |
Gurtin M E , Murphy L F . On the optimal harvesting of persistent age-structured populations. J Math Biology, 1981, 13: 131- 148
doi: 10.1007/BF00275209 |
12 | Murphy L F , Smith S J . Optimal harvesting of an age-structured population. J Math Biology, 1990, 29: 77- 90 |
13 | Busoni G , Matucci S . A problem of optimal harvesting policy in two-stage age-dependent populations. Mathematical Biosciences, 1997, 43: 1- 33 |
14 |
Barbu V , Iannelli M . Optimal control of population dynamics. J Optim Theor Appl, 1999, 102: 1- 14
doi: 10.1023/A:1021865709529 |
15 |
Fister K R , Lenhart S . Optimal harvesting in an age-structured predator-prey model. Appl Math Optim, 2006, 54: 1- 15
doi: 10.1007/s00245-005-0847-9 |
16 |
Hritoenko N , Yatsenko Y . The structure of optimal time- and age-dependent harvesting in the Lotka-McKendrik population model. Mathematical Biosciences, 2007, 208: 48- 62
doi: 10.1016/j.mbs.2006.09.008 |
17 |
Zhao C , Zhao P , Wang M S . Optimal harvesting for nonlinear age-dependent population dynamics. Mathematical and Computer Modelling, 2006, 43: 310- 319
doi: 10.1016/j.mcm.2005.06.008 |
18 |
Luo Z . Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model. Applied Mathematics and Computation, 2007, 186: 1742- 1752
doi: 10.1016/j.amc.2006.08.168 |
19 |
Lu D , Gu J , Wang X . Optimal harvesting problems for an age-dependent n-dimensional food chain model with diffusion. Applied Mathematics and Computation, 2007, 184: 659- 668
doi: 10.1016/j.amc.2006.06.065 |
20 |
He Z R . Opitmal harvesting of two competing species with age dependence. Nonlinear Analysis: RWA, 2006, 7: 769- 788
doi: 10.1016/j.nonrwa.2005.04.005 |
21 |
Braverman E , Braverman L . Optimal harvesting of diffusive models in a nonhomogeneous environment. Nonlinear Analysis, 2009, 71: e2173- e2191
doi: 10.1016/j.na.2009.04.025 |
22 |
Dewsbury D A . Dominance rank, copulatory behavior, and differential reproduction. The Quarterly Review of Biology, 1982, 57 (2): 135- 159
doi: 10.1086/412672 |
23 | Cushing J M , Li J . Oscillations caused by cannibalism in a size-structured population model. Canadian Applied Mathematics Quarterly, 1995, 3 (2): 155- 172 |
24 |
Cañada A , Saldana J . Asymptotic behaviour of a model of hierarchically structured population dynamics. Journal of Mathematical Biology, 1997, 35 (8): 967- 987
doi: 10.1007/s002850050085 |
25 |
Kraev E A . Existence and uniqueness for height structured hierarchical population models. Natural Resource Modeling, 2001, 14 (1): 45- 70
doi: 10.1111/j.1939-7445.2001.tb00050.x |
26 |
Jang R J , Cushing J M . A discrete hierarchical model of intra-specific competition. Journal of Mathematical Analysis and Applications, 2003, 280 (1): 102- 122
doi: 10.1016/S0022-247X(03)00050-7 |
27 | Ackleh A S , Deng K . Monotone approximation for a hierarchical age-structured population model. Dynamics of Continuous, Discrete and Impulsive Systems, 2005, 2 (2): 203- 214 |
28 |
Shen J , Shu C W , Zhang M . A high order WENO Scheme for a hierarchical size-structured population model. Journal of Scientific Computing, 2007, 33 (3): 279- 291
doi: 10.1007/s10915-007-9152-x |
29 | Liu Y , He Z . On the well-posedness of a nonlinear hierarchical size-structured population model. ANZIAM Journal, 2017, 58 (3/4): 482- 490 |
30 |
He Z R , Ni D , Wang S P . Optimal harvesting of a hierarchical age-structured population system. International Journal of Biomathematics, 2019, 12 (8): 1950091
doi: 10.1142/S1793524519500918 |
31 | 何泽荣, 周楠, 韩梦杰. 年龄等级结构两种群系统模型解的存在唯一性. 数学进展, 2020, 49 (6): 713- 722 |
He Z R , Zhou N , Han M J . On the system model of two hierarchical age-structured populations. Advances in Mathematics, 2020, 49 (6): 713- 722 | |
32 | Yosida K . Functional Analysis. Beijing: Beijing World Publishing Corporation, 1999 |
33 | Barbu V . Mathematical Methods in Optimization of Differential Systems. Dordrecht: Kluwer Academic Publishers, 1994 |
[1] | 何泽荣,韩梦杰. 带时滞的尺度等级结构种群系统的最优初始控制[J]. 数学物理学报, 2021, 41(4): 1181-1191. |
[2] | 刘琼琳,唐应辉. 在![]() ![]() ![]() |
[3] | 何泽荣,张智强,王阳. 一类非线性年龄等级结构种群模型的稳定性[J]. 数学物理学报, 2020, 40(6): 1712-1722. |
[4] | 何泽荣,张智强,裘哲勇. 一类非线性年龄等级结构种群模型的数值解法[J]. 数学物理学报, 2020, 40(2): 515-526. |
[5] | 罗乐,唐应辉. 具有p-进入规则和Min(N, D, V)-策略的M/G/1排队系统容量问题研究[J]. 数学物理学报, 2019, 39(5): 1228-1246. |
[6] | 唐矛宁,孟庆欣. 带跳跃平均场倒向随机微分方程的线性二次最优控制[J]. 数学物理学报, 2019, 39(3): 620-637. |
[7] | 李润鑫,黄辉,尚振宏,曹宇,王红斌,张晶. 多目标约束向量优化问题的类拉格朗日乘数法[J]. 数学物理学报, 2018, 38(6): 1076-1094. |
[8] | 潘取玉,唐应辉. 在延迟Min (N, D)-策略M/G/1可修排队系统及最优控制策略[J]. 数学物理学报, 2018, 38(5): 1014-1031. |
[9] | 章春国, 刘宇标, 刘维维. Timoshenko梁的边界最优控制[J]. 数学物理学报, 2018, 38(3): 454-466. |
[10] | 李周红, 张丰硕, 曹进德, Alsaedi Ahmed, Alsaadi Fuad E. 时标上带有反馈控制的非自治两种群竞争系统的概周期解[J]. 数学物理学报, 2017, 37(4): 730-750. |
[11] | 高丽君, 唐应辉. 具有Min(N,D)-策略控制的M/G/1可修排队系统及最优控制策略[J]. 数学物理学报, 2017, 37(2): 352-365. |
[12] | 何泽荣, 杨立志. 具有尺度结构和双加权的种群模型:稳定性与最优收获[J]. 数学物理学报, 2016, 36(3): 584-600. |
[13] | 何泽荣, 刘荣, 刘丽丽. 模拟周期环境和尺度结构的种群系统的最优收获率[J]. 数学物理学报, 2014, 34(3): 684-690. |
[14] | 武利猛, 倪明康, 陆海波. 奇摄动最优控制问题中的内部转移层解[J]. 数学物理学报, 2013, 33(2): 206-215. |
[15] | 刘炎, 何泽荣. 具有Size结构的捕食种群系统的最优收获策略[J]. 数学物理学报, 2012, 32(1): 90-102. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|