数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 103-130.

• 论文 • 上一篇    下一篇

一类带临界指数增长的椭圆型方程组两个正解的存在性

万优艳*(),谢俊()   

  1. 江汉大学人工智能学院 武汉 430056
  • 收稿日期:2020-07-29 出版日期:2022-02-26 发布日期:2022-02-23
  • 通讯作者: 万优艳 E-mail:wanyouyan@jhun.edu.cn;xiejunqaq@163.com
  • 作者简介:谢俊, E-mail: xiejunqaq@163.com
  • 基金资助:
    湖北省教育厅科学研究计划指导性项目(B2019239)

The Existence of Two Positive Solutions to an Elliptic System with Critical Sobolev Exponents

Youyan Wan*(),Jun Xie()   

  1. School of Artificial Intelligence, Jianghan University, Wuhan 430056
  • Received:2020-07-29 Online:2022-02-26 Published:2022-02-23
  • Contact: Youyan Wan E-mail:wanyouyan@jhun.edu.cn;xiejunqaq@163.com
  • Supported by:
    the Guidance Project of Science Research Program of Hubei Education Department(B2019239)

摘要:

该文主要讨论带临界指数的椭圆型方程组 解的存在性,其中$\Omega$$\mathbb{R} ^N$中一个光滑有界区域, $N=3, 4,a\geq 2,\beta\geq 2, $ $ \alpha +\beta =2^*=\frac{2N}{N-2}, $$ f(x)\geq 0, $ $ g(x)\geq 0, $ $ f(x), $ $g(x)\in H^{-1}( \Omega ), $ $ a(x)\geq 0,$ $b(x)\geq0.$证明了在一定条件下,问题$(*) $存在两个能量大于零的正解.

关键词: 临界Sobolev指数, (PS)c条件, Ljusternik-Schnirelman簇数

Abstract:

In this paper, we consider the Existence of Solutions of an Elliptic System with Critical Sobolev Exponents Where $\Omega$ is a bounded smooth domain of $\mathbb{R} ^N$, $N=3, 4, a\geq 2, \beta\geq 2, $ $\alpha +\beta=2^*=\frac{2N}{N-2}, $ $ f(x)\geq 0, $ $ g(x)\geq 0, $ $ f(x), $ $g(x)\in H^{-1}(\Omega), a(x)\geq 0, b(x)\geq0.$ We obtain that under some assumptions the problem $(*)$ has two positive solutions with energy larger than zero.

Key words: Critical Sobolev exponent, Palais-Smale condition, Ljusternlik-Schnirelman category

中图分类号: 

  • O175.25