数学物理学报 ›› 2021, Vol. 41 ›› Issue (4): 936-953.
收稿日期:
2020-05-14
出版日期:
2021-08-26
发布日期:
2021-08-09
通讯作者:
杨素敏
E-mail:zhy71118@163.com;454742516@qq.com;smyang125@126.com;86072787@qq.com
作者简介:
朱红英, E-mail: 基金资助:
Hongying Zhu1(),Minzhi Wei1(),Sumin Yang2,*(),Caoqing Jiang1()
Received:
2020-05-14
Online:
2021-08-26
Published:
2021-08-09
Contact:
Sumin Yang
E-mail:zhy71118@163.com;454742516@qq.com;smyang125@126.com;86072787@qq.com
Supported by:
摘要:
该文研究一类四次扰动Liénard系统的极限环分支.根据Chebyshev系统理论,结合多项式代数中的正则链理论,证明了系统的Abel积分的生成元是构成精度为3的Chebyshev系统,得出该系统至多可以分支出6个极限环.根据Abel积分在周期环域中的渐近展开式及分支理论,证明了该系统至少可以分支出3个极限环.
中图分类号:
朱红英,韦敏志,杨素敏,蒋曹清. 一类四次扰动Liénard系统的极限环分支[J]. 数学物理学报, 2021, 41(4): 936-953.
Hongying Zhu,Minzhi Wei,Sumin Yang,Caoqing Jiang. Bifurcation of Limit Cycles from a Liénard System of Degree 4[J]. Acta mathematica scientia,Series A, 2021, 41(4): 936-953.
1 | Arnold V I . Arnold's Problems. Berlin: Springer-Verlag, 2004 |
2 |
Arnold V I . Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields. Funct Anal Appl, 1977, 11, 85- 92
doi: 10.1007/BF01081886 |
3 | Arnold V I . Ten problems. Adv Soviet Math, 1990, 1, 1- 8 |
4 |
Chen F D , Li C Z , Llibre J , Zhang Z H . A unified proof on the weak Hilbert 16th problem for $n=2$. J Differ Equations, 2006, 221 (2): 309- 342
doi: 10.1016/j.jde.2005.01.009 |
5 | Chen L , Ma X Z , Zhang G M , Li C Z . Cyclicity of several quadratic reversible systems with center of genus one. J Appl Anal Comput, 2011, 1 (4): 439- 447 |
6 | Christopher C , Li C Z . Limit Cycles of Differential Equations. Basel: Birkhäuser, 2007 |
7 |
Dumortier F , Li C Z . Perturbations from an elliptic Hamiltonian of degree four: (Ⅰ) Saddle loop and two saddle cycle. J Differ Equations, 2001, 176, 114- 157
doi: 10.1006/jdeq.2000.3977 |
8 |
Dumortier F , Li C Z . Perturbations from an elliptic Hamiltonian of degree four: (Ⅱ) Cuspidal loop. J Differ Equations, 2001, 175, 209- 243
doi: 10.1006/jdeq.2000.3978 |
9 |
Dumortier F , Li C Z . Perturbation from an elliptic Hamiltonian of degree four: Ⅲ Global center. J Differ Equations, 2003, 188, 473- 511
doi: 10.1016/S0022-0396(02)00110-9 |
10 | Dumortier F , Li C Z . Perturbations from an elliptic Hamiltonian of degree four: (Ⅳ) Figure eight-loop. J Differ Equations, 2003, 88, 512- 514 |
11 | Écalle J . Introduction Aux Fonctions Analysables et Preuve Constructive De la Conjecture De Dulac. French: Hermann, 1992 |
12 |
Gavrilov L . The infinitesimal 16th Hilbert problem in the quadratic case. Invent Math, 2001, 143, 449- 497
doi: 10.1007/PL00005798 |
13 |
Grau M , Mañosas F , Villadelprat J . A Chebyshev criterion for Abelian integrals. Trans Amer Math Soc, 2011, 363, 109- 129
doi: 10.1090/S0002-9947-2010-05007-X |
14 |
Han M A . Asymptotic expansions of Melnikov functions and limit cycle bifurcations. Int J Bifur Chaos, 2012, 22, 1250296
doi: 10.1142/S0218127412502963 |
15 |
Han M A . Existence of at most 1, 2, or 3 zeros of a melnikov function and limit cycles. J Differ Equations, 2001, 170 (2): 325- 343
doi: 10.1006/jdeq.2000.3828 |
16 |
Han M A . On Hopf cyclicity of planar systems. J Math Anal Appl, 2000, 245 (2): 404- 422
doi: 10.1006/jmaa.2000.6758 |
17 | Han M A , Wang Z , Zang H . Limit cycles by Hopf and homoclinic bifurcations for near-Hamiltonian systems. Chinese Ann Math Series A, 2007, 62 (5): 3214- 3234 |
18 |
Han M A , Yang J M , Tarta A A , Gao Y . Limit cycles near homoclinic and heteroclinic loops. J Dynam Differ Equat, 2008, 20, 923- 944
doi: 10.1007/s10884-008-9108-3 |
19 |
Han M A , Yang J M , Yu P . Hopf bifurcations for near-Hamiltonian systems. Inter J Bifur Chaos, 2009, 19 (12): 4117- 4130
doi: 10.1142/S0218127409025250 |
20 |
Hilbert D . Mathematical problems. Bull Amer Math Soc, 1902, 8, 437- 479
doi: 10.1090/S0002-9904-1902-00923-3 |
21 | Horozov E , Iliev I D . On the number of limit cycles in perturbations of quadratic Hamiltonian systems. Proc London Math Soc, 1994, 69, 198- 224 |
22 | Ilyashenko Y S . Finiteness Theorems for Limit Cycles. Providence RI: Amer Math Soc, 1991 |
23 |
Li C Z . Abelian integrals and limit cycles. Qual Theory Dyn Syst, 2012, 11, 111- 128
doi: 10.1007/s12346-011-0051-z |
24 |
李承治, 李伟固. 弱化希尔伯特第16问题及其研究现状. 数学进展, 2010, 39 (5): 513- 526
doi: 10.11845/sxjz.2010.39.05.0513 |
Li C Z , Li W G . Weak Hilbert's 16th problem and the relative research. Adv Math(CHINA), 2010, 39 (5): 513- 526
doi: 10.11845/sxjz.2010.39.05.0513 |
|
25 |
Li C Z , Zhang Z F . A criterion for determining the monotonicity of the ratio of two abelian integrals. J Differ Equations, 1996, 124, 407- 424
doi: 10.1006/jdeq.1996.0017 |
26 |
Li C Z , Zhang Z H . Remarks on 16th weak Hilbert problem for $n = 2$. Nonlinearity, 2002, 15, 1975- 1992
doi: 10.1088/0951-7715/15/6/310 |
27 |
Li J B . Hilberts 16th problem and bifurcations of planar polynomial vector fields. Inter J Bifur Chaos, 2003, 13, 47- 106
doi: 10.1142/S0218127403006352 |
28 |
Liu C J . The cyclicity of period annuli of a class of quadratic reversible systems with two centers. J Differ Equations, 2012, 252 (10): 5260- 5273
doi: 10.1016/j.jde.2012.02.005 |
29 |
Liu C J , Xiao D M . The monotonicity of the ratio of two Abelian integrals. Tran the Ame Math Soc, 2013, 365 (10): 5525- 5544
doi: 10.1090/S0002-9947-2013-05934-X |
30 |
Manosas F , Villadelprat J . Bounding the number of zeros of certain Abelian integrals. J Differ Equations, 2011, 251 (6): 1656- 1669
doi: 10.1016/j.jde.2011.05.026 |
31 |
Petrov G S . Number of zeros of complete elliptic integrals. Funct Anal App, 1984, 18 (2): 148- 149
doi: 10.1007/BF01077834 |
32 | Pontryagin L S . On dynamical systems close to hamiltonian ones. Zh Exp Theor Phys, 1934, 4, 234- 238 |
33 | Smale S . Mathematical problems for the next century. Math Intelligencer, 1998, 2, 7- 15 |
34 |
Sun X B , Huang W T . Bounding the number of limit cycles for a polynomial Liénard system by using regular chains. J Symb Comput, 2017, 79, 197- 210
doi: 10.1016/j.jsc.2016.02.004 |
35 |
Sun X B , Su J , Han M A . On the number of zeros of Abelian integral for some Liénard system of type (4, 3). Chaos Soliton Fract, 2013, 51, 1- 12
doi: 10.1016/j.chaos.2013.02.003 |
36 | 孙宪波, 吴奎霖. 一类扰动超椭圆Hamilton系统的Abel积分零点个数上确界. 中国科学, 2015, 45 (6): 751- 764 |
Sun X B , Wu K L . The sharp bound on the number of zeros of Abelian integral for a perturbation of hyper-elliptic Hamiltonian system. Science in China, 2015, 45 (6): 751- 764 | |
37 |
Sun X B , Xi H J , Zangeneh H R Z , Kazemi R . Bifurcation of limit cycles in small perturbation of a class of Liénard systems. Int J Bifur Chaos, 2014, 24 (01): 1450004
doi: 10.1142/S0218127414500047 |
38 |
Tian Y , Han M A . Hopf and homoclinic bifurcations for near-Hamiltonian systems. J Differ Equat, 2017, 262 (4): 3214- 3234
doi: 10.1016/j.jde.2016.11.026 |
39 |
Wang J H . Estimate of the number of zeros of Abelian integrals for a perturbation of hyperelliptic Hamiltonian system with nilpotent center. Chaos Soliton Fract, 2012, 45, 1140- 1146
doi: 10.1016/j.chaos.2012.05.011 |
40 |
Wang J H , Xiao D M . On the number of limit cycles in small perturbations of a class of hyperelliptic Hamiltonian systems with one nilpotent saddle. J Differ Equations, 2011, 250, 2227- 2243
doi: 10.1016/j.jde.2010.11.004 |
41 |
Xiao D M . Bifurcations on a five-parameter family of planar vector field. J Dyn Diff Equat, 2008, 20, 961- 980
doi: 10.1007/s10884-008-9109-2 |
42 | Zhang Z F , Li C Z . On the number of limit cycles of a class of quadratic Hamiltonian systems under quadratic perturbations. Adv in Math, 1997, 26, 445- 460 |
[1] | 杨纪华,张二丽. $n$-维分段光滑微分系统的周期轨分支[J]. 数学物理学报, 2020, 40(4): 1043-1052. |
[2] | 朱昆,沈建和. 一类广义Gierer-Meinhardt方程多脉冲同宿解的再研究[J]. 数学物理学报, 2019, 39(6): 1365-1375. |
[3] | 王改霞,刘纪轩,李学志. 人口总数变化的比例进入潜伏或染病群体的年龄结构传染病模型及稳定性[J]. 数学物理学报, 2019, 39(5): 1260-1271. |
[4] | 程志波,毕中华,姚绍文. 一类具有偏差变元的p-Laplacian Liénard型方程在吸引奇性条件下周期解的存在性[J]. 数学物理学报, 2019, 39(2): 277-285. |
[5] | 李华,刘三红,方奕乐,张兴安. 儿童手足口病的数学建模和计算机模拟[J]. 数学物理学报, 2018, 38(5): 1032-1040. |
[6] | 廖暑芃, 沈建和. 一类带有慢变参数的sine-Gordon方程的单脉冲异宿轨道[J]. 数学物理学报, 2018, 38(4): 810-822. |
[7] | 梁海华, 陈玉明, 岑秀丽. 一类拟齐次多项式中心的极限环分支[J]. 数学物理学报, 2018, 38(1): 1-9. |
[8] | 傅金波, 陈兰荪. 基于生态环境和反馈控制的多种群竞争系统的正周期解[J]. 数学物理学报, 2017, 37(3): 553-561. |
[9] | 姜阿尼. 一类具振动循环损失率的造血模型的伪概周期解[J]. 数学物理学报, 2016, 36(1): 80-89. |
[10] | 许艳丽. 一类具有震动恢复率和时滞的传染病模型的指数收敛性[J]. 数学物理学报, 2015, 35(5): 987-994. |
|