数学物理学报 ›› 2021, Vol. 41 ›› Issue (4): 936-953.

• 论文 • 上一篇    下一篇

一类四次扰动Liénard系统的极限环分支

朱红英1(),韦敏志1(),杨素敏2,*(),蒋曹清1()   

  1. 1 广西财经学院应用数学系 南宁 530003
    2 广西机电职业技术学院公共教学部 南宁 530003
  • 收稿日期:2020-05-14 出版日期:2021-08-26 发布日期:2021-08-09
  • 通讯作者: 杨素敏 E-mail:zhy71118@163.com;454742516@qq.com;smyang125@126.com;86072787@qq.com
  • 作者简介:朱红英, E-mail: zhy71118@163.com|韦敏志, E-mail: 454742516@qq.com|蒋曹清, E-mail: 86072787@qq.com
  • 基金资助:
    国家自然科学基金(11861009);国家自然科学基金(11761011);广西自然科学基金(2020JJB110007);广西高校科研项目(2020KY16020)

Bifurcation of Limit Cycles from a Liénard System of Degree 4

Hongying Zhu1(),Minzhi Wei1(),Sumin Yang2,*(),Caoqing Jiang1()   

  1. 1 Department of Applied Mathematics, Guangxi University of Finance and Economics, Nanning 530003
    2 Department of Public Teaching, Guangxi Technological College of Machinery and Electricity, Nanning 530003
  • Received:2020-05-14 Online:2021-08-26 Published:2021-08-09
  • Contact: Sumin Yang E-mail:zhy71118@163.com;454742516@qq.com;smyang125@126.com;86072787@qq.com
  • Supported by:
    the NSFC(11861009);the NSFC(11761011);the NSF of Guangxi(2020JJB110007);the Middle-Aged and Young Teachers' Basic Ability Promotion Project in Guangxi and Scientific Research Project(2020KY16020)

摘要:

该文研究一类四次扰动Liénard系统的极限环分支.根据Chebyshev系统理论,结合多项式代数中的正则链理论,证明了系统的Abel积分的生成元是构成精度为3的Chebyshev系统,得出该系统至多可以分支出6个极限环.根据Abel积分在周期环域中的渐近展开式及分支理论,证明了该系统至少可以分支出3个极限环.

关键词: Liénard系统, Chebyshev系统, Melnikov functions, 弱化的Hilbert第十六问题

Abstract:

In this paper, we study the number of limit cycles by Poincaré bifurcation for some Liénard system of degree 4. We prove that the system can bifurcate at most 6 limit cycles from the periodic annulus, by the tools of regular chain theory in polynomial algebra and Chebyshev criteria, at least 3 limit cycles by asymptotic expansions of the related Abelian integral (first order Melnikov functions).

Key words: Liénard system, Chebyshev system, Melnikov functions, Weak Hilbert's 16th problem

中图分类号: 

  • O175.12