数学物理学报 ›› 2021, Vol. 41 ›› Issue (3): 652-665.

• 论文 • 上一篇    下一篇

$\mathbb{R}^2$上带多重狄拉克测度的非线性亥姆霍茨方程

马勇1(),陈虎元2,*()   

  1. 1 江西师范大学计算机信息工程学院 南昌 330022
    2 江西师范大学数学与统计学院 南昌 330022
  • 收稿日期:2020-07-26 出版日期:2021-06-01 发布日期:2021-06-09
  • 通讯作者: 陈虎元 E-mail:mayong2020@yeah.net;chenhuyuan@yeah.net
  • 作者简介:马勇, E-mail: mayong2020@yeah.net
  • 基金资助:
    国家自然科学基金(12071189);江西省自然科学基金(20202BAB201005);江西省自然科学基金(20202ACBL201001);江西省教育厅科学技术项目(GJJ200307);江西省重点研发计划项目(20181ACE50029)

Nonlinear Helmholtz Equation Involving Multiple Dirac Masses in $\mathbb{R}^2$

Yong Ma1(),Huyuan Chen2,*()   

  1. 1 Department of Computer Information Engineering, Jiangxi Normal University, Nanchang 330022
    2 Department of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
  • Received:2020-07-26 Online:2021-06-01 Published:2021-06-09
  • Contact: Huyuan Chen E-mail:mayong2020@yeah.net;chenhuyuan@yeah.net
  • Supported by:
    the NSFC(12071189);the NSF of Jiangxi Province(20202BAB201005);the NSF of Jiangxi Province(20202ACBL201001);the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ200307);the Key R&D Plan of Jiangxi Province(20181ACE50029)

摘要:

该文的目的是研究在二维全空间上的非线性亥姆霍茨方程 $ -\Delta u-u=Q|u{|^{p-2}}u+\sum\limits_{i=1}^N{{k_i}}{\delta_{{A_i}}} $ 的弱解,其中$p>1$,$k_i\in$$\mathbb{R}$\{0},i=1,…,NQ:$\mathbb{R}^2$→[0,+∞)是Hölder连续函数,${\delta_{{A_i}}}$是集中在${{A_i}}$上的狄拉克测度.假定$Q$在无穷远处有由$|x|^{\alpha}$($\alpha\leq 0$)控制的退化,$p>\max\{2,3(2+\alpha)\}$,那么存在$k^*>0$,使得当$k=\sum\limits_{i=1}^N{|{k_i}}| < {k^*}$时,方程(0.1)有两个弱解.它们是变号实值解,且在${{A_i}}$处具有全向性奇性.此外这里的奇性解是(0.1)对应积分方程的能量泛函的临界点,该临界点是通过山路引理得到的.最后当$p>\max\{2,4(2+\alpha)\}$时,该文使用迭代的方法获得了方程(0.1)的弱解在无穷远处有由$|x|^{-\frac12}$控制的衰减性.

关键词: 亥姆霍茨方程, 孤立奇点, 山路引理

Abstract:

Our purpose of this paper is to study weak solutions of nonlinear Helmholtz equation $-\Delta u-u=Q|u{|^{p-2}}u+\sum\limits_{i=1}^N{{k_i}}{\delta_{{A_i}}}$ where $p>1$, $k_i\in$$\mathbb{R}$\{0} with i=1, …, N, Q: $\mathbb{R}^2$→[0, +∞) is a Hölder continuous function and ${\delta_{{A_i}}}$ is the Dirac mass concentrated at ${{A_i}}$.We obtain two solutions of (0.1) if $k=\sum\limits_{i=1}^N{|{k_i}}| < {k^*}$ for some $k^*$>0 when $Q$ decays as $|x|^{α}$ at infinity with $α ≤ $ 0 and $p$>max{2, 3(2+$α$)}. These two sequences of solutions of (0.1) are sign-changing real-valued solutions with isotropic singularity at ${{A_i}}$ by applying Mountain Pass Theorem to an related integral equation. By using the iteration technique, we obtain the decays of solution of (0.1) controlled by $|x|^{-\frac12}$ at infinity when $p>\max\{2, 4(2+\alpha)\}$.

Key words: Helmholtz equation, Isolated singularity, Mountain pass theorem

中图分类号: 

  • O177