数学物理学报 ›› 2021, Vol. 41 ›› Issue (1): 227-236.

• 论文 • 上一篇    下一篇

混合型随机微分方程的传输不等式

徐丽平,李治*()   

  1. 长江大学信息与数学学院 湖北荆州 434023
  • 收稿日期:2019-12-24 出版日期:2021-02-26 发布日期:2021-01-29
  • 通讯作者: 李治 E-mail:lizhi_csu@126.com
  • 基金资助:
    国家自然科学基金(11901058);国家自然科学基金(62076039)

Transportation Inequalities for Mixed Stochastic Differential Equations

Liping Xu,Zhi Li*()   

  1. School of Information and Mathematics, Yangtze University, Hubei Jingzhou 434023
  • Received:2019-12-24 Online:2021-02-26 Published:2021-01-29
  • Contact: Zhi Li E-mail:lizhi_csu@126.com
  • Supported by:
    the NSFC(11901058);the NSFC(62076039)

摘要:

该文探讨一类由Wiener过程和Hurst参数 $1/2 < H < 1$分数布朗运动驱动的混合型随机微分方程.通过使用一些变换技巧和逼近方法,这类方程的强解在$d_2$度量和一致度量$d_{\infty}$下的二次传输不等式被建立.

关键词: 传输不等式, 混合型随机微分方程, 分数布朗运动, 轨道积分

Abstract:

In this paper, we discuss a class of stochastic differential equations containing both Wiener process and fractional Brownian motion with Hurst parameter $1/2<H<1$. By using some transformation technique and approximation argument, we establish the quadratic transportation inequalities for the law of the solution of the equations under investigation under the $d_2$ metric and the uniform metric $d_{\infty}$.

Key words: Transportation inequalities, Mixed stochastic differential equations, Fractional Brownian motion, Pathwise integral

中图分类号: 

  • O221