数学物理学报 ›› 2021, Vol. 41 ›› Issue (1): 227-236.

• 论文 • 上一篇    下一篇

混合型随机微分方程的传输不等式

徐丽平,李治*()   

  1. 长江大学信息与数学学院 湖北荆州 434023
  • 收稿日期:2019-12-24 出版日期:2021-02-26 发布日期:2021-01-29
  • 通讯作者: 李治 E-mail:lizhi_csu@126.com
  • 基金资助:
    国家自然科学基金(11901058);国家自然科学基金(62076039)

Transportation Inequalities for Mixed Stochastic Differential Equations

Liping Xu,Zhi Li*()   

  1. School of Information and Mathematics, Yangtze University, Hubei Jingzhou 434023
  • Received:2019-12-24 Online:2021-02-26 Published:2021-01-29
  • Contact: Zhi Li E-mail:lizhi_csu@126.com
  • Supported by:
    the NSFC(11901058);the NSFC(62076039)

摘要:

该文探讨一类由Wiener过程和Hurst参数 1/2<H<1分数布朗运动驱动的混合型随机微分方程.通过使用一些变换技巧和逼近方法,这类方程的强解在d2度量和一致度量d下的二次传输不等式被建立.

关键词: 传输不等式, 混合型随机微分方程, 分数布朗运动, 轨道积分

Abstract:

In this paper, we discuss a class of stochastic differential equations containing both Wiener process and fractional Brownian motion with Hurst parameter 1/2<H<1. By using some transformation technique and approximation argument, we establish the quadratic transportation inequalities for the law of the solution of the equations under investigation under the d2 metric and the uniform metric d.

Key words: Transportation inequalities, Mixed stochastic differential equations, Fractional Brownian motion, Pathwise integral

中图分类号: 

  • O221