数学物理学报 ›› 2020, Vol. 40 ›› Issue (6): 1646-1669.
收稿日期:
2019-08-30
出版日期:
2020-12-26
发布日期:
2020-12-29
通讯作者:
原子霞
E-mail:math@126.com;yuanzixia@uestc.edu.cn
作者简介:
王娟, E-mail: Juanwang 基金资助:
Received:
2019-08-30
Online:
2020-12-26
Published:
2020-12-29
Contact:
Zixia Yuan
E-mail:math@126.com;yuanzixia@uestc.edu.cn
Supported by:
摘要:
该文主要研究一维有界区间中具有对数敏感度的趋化模型
中图分类号:
王娟,原子霞. 具有对数敏感度和混合边界的一维趋化模型解的整体存在性和收敛性[J]. 数学物理学报, 2020, 40(6): 1646-1669.
Juan Wang,Zixia Yuan. Global Existence and Convergence of Solutions to a Chemotactic Model with Logarithmic Sensitivity and Mixed Boundary Conditions[J]. Acta mathematica scientia,Series A, 2020, 40(6): 1646-1669.
1 | Adler J . Chemotaxis in bacteria. Science, 1966, 153 (3737): 708- 716 |
2 | Deng C , Li T . Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework. Journal of Differential Equations, 2014, 257 (5): 1311- 1332 |
3 | Fontelos M A , Friedman A , Hu B . Mathematical analysis of a model for the initiation of angiogenesis. SIAM Journal on Mathematical Analysis, 2002, 33 (6): 1330- 1355 |
4 |
Guo J , Xiao J X , Zhao H J , Zhu C J . Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Mathematica Scientia, 2009, 29 (3): 629- 641
doi: 10.1016/S0252-9602(09)60059-X |
5 | Hao C C . Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces. Zeitschrift für angewandte Mathematik und Physik, 2012, 63 (5): 825- 834 |
6 | Hou Q Q , Liu C J , Wang Y G , Wang Z A . Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis:one-dimensional case. SIAM Journal on Mathematical Analysis, 2018, 50 (3): 3058- 3091 |
7 | Hou Q Q , Wang Z A , Zhao K . Boundary layer problem on a hyperbolic system arising from chemotaxis. Journal of Differential Equations, 2016, 261 (9): 5035- 5070 |
8 | Hou Q Q , Wang Z A . Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane. Journal de Mathematiques Pures et Appliquees, 2019, 130: 251- 287 |
9 | Jin H Y , Li J Y , Wang Z A . Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity. Journal of Differential Equations, 2013, 255 (2): 193- 219 |
10 | Keller E F , Segel L A . Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology, 1970, 26 (3): 399- 415 |
11 | Keller E F , Segel L A . Traveling bands of chemotactic bacteria:a theoretical analysis. Journal of Theoretical Biology, 1971, 30 (2): 235- 248 |
12 | Levine H A , Sleeman B D . A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM Journal on Applied Mathematics, 1997, 57 (3): 683- 730 |
13 | Li D , Li T , Zhao K . On a hyperbolic-parabolic system modeling chemotaxis. Mathematical Models and Methods in Applied Sciences, 2011, 21 (8): 1631- 1650 |
14 | Li H , Zhao K . Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. Journal of Differential Equations, 2015, 258 (2): 302- 338 |
15 | Li T , Pan R H , Zhao K . Global dynamics of a hyperbolic-parabolic model arising from chemotaxis. SIAM Journal on Applied Mathematics, 2012, 72 (1): 417- 443 |
16 | Li T , Wang Z A . Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis. SIAM Journal on Applied Mathematics, 2009, 70 (5): 1522- 1541 |
17 | Li T , Wang Z A . Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis. Mathematical Models and Methods in Applied Sciences, 2010, 20 (11): 1967- 1998 |
18 | Li T , Wang Z A . Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis. Journal of Differential Equations, 2011, 250 (3): 1310- 1333 |
19 | Li T , Wang Z A . Steadily propagating waves of a chemotaxis model. Mathematical Biosciences, 2012, 240 (2): 161- 168 |
20 | Li J Y , Wang L N , Zhang K J . Asymptotic stability of a composite wave of two traveling waves to a hyperbolic-parabolic system modeling chemotaxis. Mathematical Methods in the Applied Sciences, 2013, 36 (14): 1862- 1877 |
21 | Martinez V R , Wang Z A , Zhao K . Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology. Indiana University Mathematics Journal, 2018, 67 (4): 1383- 1424 |
22 | Ni W M . Diffusion, cross-diffusion, and their spike-layer steady states. Notices of the Amer Math Soc, 1998, 45 (1): 9- 18 |
23 | Othmer H G , Stevens A . Aggregation, blowup, and collapse:the ABC's of taxis in reinforced random walks. SIAM Journal on Applied Mathematics, 1997, 57 (4): 1044- 1081 |
24 | Peng H Y , Wen H Y , Zhu C J . Global well-posedness and zero diffusion limit of classical solutions to the 3D conservation laws arising in chemotaxis. Zeitschrift für angewandte Mathematik und Physik, 2014, 65 (6): 1167- 1188 |
25 | Peng Y , Xiang Z . Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary. Mathematical Models and Methods in Applied Sciences, 2018, 28: 869- 920 |
26 | Peng Y , Xiang Z . Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions. Journal of Differential Equations, 2019, 267: 1277- 1321 |
27 | Rebholz L G , Wang D H , Wang Z A , et al. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete and Continuous Dynamical Systems-Series A, 2019, 39 (7): 3789- 3838 |
28 | Tao Y , Wang L , Wang Z A . Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete and Continuous Dynamical Systems-Series B, 2013, 18 (3): 821- 845 |
29 | Wang Y, Winkler M, Xiang Z. The fast signal diffusion limit in Keller-Segel (-fluid) systems. Calculus of Variations and Partial Differential Equations, 2019, 58, Article number: 196 |
30 | Tian Y , Xiang Z . Global solutions to a 3D chemotaxis-Stokes system with nonlinear cell diffusion and Robin signal boundary condition. Journal of Differential Equations, 2020, 269 (3): 2012- 2056 |
31 | Wang Z A , Xiang Z , Yu P . Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis. Journal of Differential Equations, 2016, 260 (3): 2225- 2258 |
32 | Wang Z A , Zhao K . Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure and Applied Analysis, 2013, 12 (6): 3027- 3046 |
33 | Wu C , Xiang Z . The small-convection limit in a two-dimensional Keller-Segel-Navier-Stokes system. Journal of Differential Equations, 2019, 267: 938- 978 |
34 | Wu C , Xiang Z . Asymptotic dynamics on a chemotaxis-Navier-Stokes system with nonlinear diffusion and inhomogeneous boundary conditions. Mathematical Models and Methods in Applied Sciences, 2020, 30 (7): 1325- 1374 |
35 | Zhang M , Zhu C J . Global existence of solutions to a hyperbolic-parabolic system. Proceedings of the American Mathematical Society, 2007, 135 (4): 1017- 1027 |
36 | Zhu N , Liu Z R , Martinez V R , Zhao K . Global Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model. SIAM Journal on Mathematical Analysis, 2018, 50 (5): 5380- 5425 |
[1] | 王娟,赵杰. 高阶方程混合边界齐次化问题[J]. 数学物理学报, 2020, 40(4): 925-933. |
[2] | 吴杰,林红霞. 关于抛物-抛物Keller-Segel类模型的全局解和渐近性[J]. 数学物理学报, 2019, 39(5): 1102-1114. |
[3] | 段双双, 黄守军. Keller-Segel生物学方程组周期解的爆破[J]. 数学物理学报, 2017, 37(2): 326-341. |
[4] | 邱华, 张颖姝, 房少梅. 不可压粘弹性流体的Leray-α-Oldroyd模型整体解的存在性[J]. 数学物理学报, 2017, 37(1): 102-112. |
[5] | 郜欣春, 周健, 田苗青. 带有Logistic源的吸引-排斥趋化性系统的整体有界性和渐近行为[J]. 数学物理学报, 2017, 37(1): 113-121. |
[6] | 张宏伟, 刘功伟, 呼青英. 一类具对数源项波动方程的初边值问题[J]. 数学物理学报, 2016, 36(6): 1124-1136. |
[7] | 刘洋. 位势井及其对具临界初始能量的非牛顿渗流方程的应用[J]. 数学物理学报, 2016, 36(6): 1211-1220. |
[8] | 娄翠娟, 杨茵. 一类经典趋化性模型行波解的存在性[J]. 数学物理学报, 2015, 35(6): 1044-1058. |
[9] | 狄华斐, 尚亚东. 一类带有非线性阻尼项和源项的四阶波动方程整体解的存在性与不存在性[J]. 数学物理学报, 2015, 35(3): 618-633. |
[10] | 沈继红, 张明有, 杨延冰, 刘博为, 徐润章. 具阻尼的高维广义Boussinesq 方程的Cauchy 问题的整体适定性[J]. 数学物理学报, 2014, 34(5): 1173-1187. |
[11] | 米永生, 穆春来, 吴云龙. 具有多重非线性的非牛顿多方渗流方程的整体存在性与非存在性[J]. 数学物理学报, 2014, 34(3): 626-637. |
[12] | 凌征球, 周泽文. 非局部边界条件的退化抛物方程组解的爆破和整体存在性[J]. 数学物理学报, 2014, 34(2): 338-346. |
[13] | 曲风龙, 王玉泉. 一类带有趋化性扩散的细菌模型一致有界解的整体存在性[J]. 数学物理学报, 2014, 34(2): 409-418. |
[14] | 毛剑峰, 黎野平. 三维双极Euler-Poisson方程初值问题光滑解的整体存在性和渐近性[J]. 数学物理学报, 2013, 33(3): 510-522. |
[15] | 王术, 冯跃红, 李新. 双极可压缩等熵Euler-Maxwell系统光滑周期解的整体存在性[J]. 数学物理学报, 2012, 32(6): 1041-1049. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|