数学物理学报 ›› 2020, Vol. 40 ›› Issue (6): 1646-1669.

• 论文 • 上一篇    下一篇

具有对数敏感度和混合边界的一维趋化模型解的整体存在性和收敛性

王娟(),原子霞*()   

  1. 电子科技大学数学科学学院 成都 611731
  • 收稿日期:2019-08-30 出版日期:2020-12-26 发布日期:2020-12-29
  • 通讯作者: 原子霞 E-mail:math@126.com;yuanzixia@uestc.edu.cn
  • 作者简介:王娟, E-mail: Juanwang math@126.com
  • 基金资助:
    电子科技大学中央高校基本科研业务费(ZYGX2019J096)

Global Existence and Convergence of Solutions to a Chemotactic Model with Logarithmic Sensitivity and Mixed Boundary Conditions

Juan Wang(),Zixia Yuan*()   

  1. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731
  • Received:2019-08-30 Online:2020-12-26 Published:2020-12-29
  • Contact: Zixia Yuan E-mail:math@126.com;yuanzixia@uestc.edu.cn
  • Supported by:
    the Fundamental Research Funds for the Central Universities, UESTC(ZYGX2019J096)

摘要:

该文主要研究一维有界区间中具有对数敏感度的趋化模型 根据Cole-Hopf变换将上述带奇性的排斥趋化模型变换为如下的非奇异方程组 并在混合边界条件下得到对应的初边值问题解的整体存在性和指数收敛性.

关键词: 趋化, 对数敏感度, 混合边界条件, 整体存在性, 指数收敛性

Abstract:

This paper investigates the following chemotactic model with logarithmic sensitivity in a one-dimensional bounded domain: By using a Cole-Hopf type transformation, we transform the above singular repulsive chemotaxis model into a non-singular system of the form Then under some mixed boundary conditions, we prove the global existence and exponential convergence of solutions to the initial-boundary value problem of the above system with regular initial data.

Key words: Chemotaxis, Logarithmic sensitivity, Mixed boundary conditions, Global existence, Exponential convergence

中图分类号: 

  • 0175.2