1 |
Abdellaoui B , Colorado E , Peral I . Some critical quasilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions:relation with Sobolev and Sobolev-Hardy optimal constants. J Math Anal Appl, 2007, 332: 1165- 1188
|
2 |
Brezis H , Lieb E . A relation between pointwise convergence of functions and convergence of functions. Proc Amer Math Soc, 1983, 88: 486- 490
|
3 |
Caffarelli L , Kohn R , Nirenberg L . First order interpolation inequalities with weights. Compos Math, 1984, 53: 259- 275
|
4 |
Drabek P , Pohozaev S . Positive solutions for the p-Laplacian:Application of the fibering method. Proc Roy Soc Edinburgh Sect A, 1997, 127: 703- 726
|
5 |
Felli V , Schneider M . Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type. J Differ Equ, 2003, 191: 121- 142
|
6 |
Huang X , Wu X , Tang C . Multiple positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents. Nonlinear Anal, 2011, 74: 2602- 2611
|
7 |
Horiuchi T . Best constant in weighted Sobolev inequality with weights being powers of distance from the origin. J Inequal Appl, 1997, 1: 275- 292
|
8 |
Kang D . On elliptic problems with critical weighted Sobolev-Hardy exponents. Nonlinear Anal, 2007, 66: 1037- 1050
|
9 |
Benmansour S , Matallah A . Multiple solutions for nonhomogeneous elliptic equations involving critical Caffarelli-Kohn-Nirenberg exponent. Mediterr J Math, 2016, 13: 4679- 4691
|
10 |
Lü D , Xiao J . Multiple solutions for weighted nonlinear elliptic system involving critical exponents. Math Comput Modelling, 2012, 55: 816- 827
|
11 |
Kang D , Kang Y . Quasilinear elliptic systems involving critical Hardy-Sobolev and Sobolev exponents. Bull Malays Math Sci Soc, 2017, 40: 1- 17
|
12 |
Li G , Peng S . Remarks on elliptic problems involving the Caffarelli-Kohn-Nirenberg inequalities. Proc Amer Math Soc, 2008, 136: 1221- 1228
|
13 |
Nyamoradi N , Shekarbigi M . Existence of positive solutions for a quasilinear elliptic system involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. Arab J Math, 2013, 2: 365- 379
|
14 |
Nyamoradi N. A variational approach to a singular elliptic system involving critical Sobolev-Hardy exponnets and concave-convex nonlinearities. Math Sci, 2013, 7, Article number: 11
|
15 |
Nyamoradi N , Hsu T . Existence of multiple positive solutions for semilinear elliptic systems involving m critical Hardy-Sobolev exponents and m sign-changing weight function. Acta Math Sci, 2014, 34B (2): 483- 500
|
16 |
Secchi S , Smets D , Willem M . Remarks on a Hardy-Sobolev inequality. C R Acad Sci Paris, 2003, 336: 811- 815
|
17 |
Talenti G . Best constant in Sobolev inequality. Ann Mat Pur Appl, 1976, 110: 353- 372
|
18 |
Wang L . Multiple solutions for a class of concave-convex quasilinear elliptic systems with nonlinear boundary condition. Appl Math, 2013, 4: 449- 455
|
19 |
Xiu Z , Chen C , Huang J . Existence of multiple solutions for an elliptic system with sign-changing weight functions. J Math Anal Appl, 2012, 395: 531- 541
|
20 |
Kang D . Positive solutions to the weighted critical quasilinear problems. Appl Math Comput, 2009, 213: 432- 439
|
21 |
Xiu Z , Chen C . Existence of multiple solutions for singular elliptic problems with nonlinear boundary conditions. J Math Anal Appl, 2014, 410: 625- 641
|
22 |
Li Y , Gao W . Existence of multiple solutions for singular quasilinear elliptic system with critical Sobolev-Hardy exponents and concave-convex terms. Acta Math Sci, 2013, 33B (1): 107- 121
|