数学物理学报 ›› 2020, Vol. 40 ›› Issue (6): 1525-1536.

• 论文 • 上一篇    下一篇

乘积流形$M^{n}\times{\Bbb R}$中一类常平均曲率方程解的存在性和唯一性

高雅(),毛井*(),宋春兰   

  1. 湖北大学数学与统计学学院 & 应用数学湖北省重点实验室 武汉 430062
  • 收稿日期:2020-01-31 出版日期:2020-12-26 发布日期:2020-12-29
  • 通讯作者: 毛井 E-mail:Echo-gaoya@outlook.com;jiner120@163.com
  • 作者简介:高雅, E-mail:Echo-gaoya@outlook.com
  • 基金资助:
    国家自然科学基金(11801496);国家自然科学基金(11926352);霍英东教育基金会青年教师基金;应用数学湖北省重点实验室基金

Existence and Uniqueness of Solutions to the Constant Mean Curvature Equation with Nonzero Neumann Boundary Data in Product Manifold $M^{n}\times{\Bbb R}$

Ya Gao(),Jing Mao*(),Chunlan Song   

  1. Faculty of Mathematics and Statistics & Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062
  • Received:2020-01-31 Online:2020-12-26 Published:2020-12-29
  • Contact: Jing Mao E-mail:Echo-gaoya@outlook.com;jiner120@163.com
  • Supported by:
    the NSFC(11801496);the NSFC(11926352);the Fok Ying-Tung Education Foundation (China);the Hubei Key Laboratory of Applied Mathematics (Hubei University)

摘要:

该文证明了乘积流形$M^{n}\times{\Bbb R}$中具有非零Neumann边值条件的常平均曲率方程解的存在性和唯一性, 这里$M^{n}$是Ricci曲率非负的$n$维完备黎曼流形, $n\geq2$, ${\Bbb R}$是1维的欧氏空间.等价地, 这个结论给出了定义在紧致严格凸域$\Omega\subset M^{n}$上的具有非退化Neumann边值条件的常平均曲率图超曲面的存在性.

关键词: 常平均曲率, Neumann边值条件, 凸性, Ricci曲率, 乘积流形

Abstract:

In this paper, we can prove the existence and uniqueness of solutions to the constant mean curvature (CMC for short) equation with nonzero Neumann boundary data in product manifold $M^{n}\times{\Bbb R}$, where $M^{n}$ is an $n$-dimensional $(n\geq2)$ complete Riemannian manifold with nonnegative Ricci curvature, and ${\Bbb R}$ is the Euclidean 1-space. Equivalently, this conclusion gives the existence of CMC graphic hypersurfaces defined over a compact strictly convex domain $\Omega\subset M^{n}$ and with nonzero Neumann boundary data.

Key words: Constant mean curvature, Neumann boundary condition, Convexity, Ricci curvature, Product manifold

中图分类号: 

  • O186.1