1 |
Bi E , Feng Z , Tu Z . Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann Glob Anal Geom, 2016, 49: 349- 359
|
2 |
Calabi E . Isometric imbedding of complex manifolds. Ann of Math, 1953, 58: 1- 23
|
3 |
Cheng X L , Niu Y Y . Submanifolds of Cartan-Hartogs domains and complex Euclidean spaces. J Math Anal Appl, 2017, 452 (2): 1262- 1268
|
4 |
Cheng X L , Di Scala A , Yuan Y . Käahler submanifolds and the Umehara algebra. Int J Math, 2017, 28 (4): 1750027
|
5 |
Cheng X L, Hao Y H. Non-relativity of Käahler manifold and complex space forms. 2005, arXiv: 2005.03208
|
6 |
Chern S S . On Einstein hypersurfaces in a Käahler manifold of constant bisectional curvature. J Differ Geom, 1967, 1: 21- 31
|
7 |
Di Scala A J , Loi A . Käahler maps of Hermitian symmetric spaces into complex space forms. Geom Dedicata, 2007, 125: 103- 113
|
8 |
Di Scala A J , Loi A . Käahler manifolds and their relatives. Ann Sc Norm Super Pisa Cl Sci, 2010, 9 (5): 495- 501
|
9 |
Di Scala A J , Ishi H , Loi A . Käahler immersions of homogeneous Käahler manifolds into complex space forms. Asian J of Math, 2012, 16 (3): 479- 488
|
10 |
Hao Y H , Wang A . The Bergman kernels of generalized Bergman-Hartogs domains. J Math Anal Appl, 2015, 429 (1): 326- 336
|
11 |
Huang X, Yuan Y. Submanifolds of Hermitian symmetric spaces//Baklouti A, Kacimi A, Kallel S, Mir N. Analysis and Geometry. Heidelberg: Springer, 2015: 197-206
|
12 |
Hulin D . Sous-variétés complexes d'Einstein de l'espace projectif (France). Bull Soc Math, 1996, 124: 277- 298
|
13 |
Hulin D . Käahler-Einstein metrics and projective embeddings. J Geom Anal, 2000, 10 (3): 525- 528
|
14 |
Ishi H , Park J D , Yamamori A . Bergman kernel function for Hartogs domains over bounded homogeneous domains. J Geom Anal, 2017, 27: 1703- 1736
|
15 |
Kim H , Ninh V T , Yamamori A . The automorphism group of a certain unbounded non-hyperbolic domain. J Math Anal Appl, 2014, 409 (2): 637- 642
|
16 |
Kim H , Yamamori A . An application of a Diederich-Ohsawa theorem in characterizing some Hartogs domains. Bull Sci Math, 2015, 139 (7): 737- 749
|
17 |
Loi A , Zedda M . Käahler-Einstein submanifolds of the infnite dimensional projective space. Math Ann, 2011, 350 (1): 145- 154
|
18 |
Loi A , Mossa R . Some remarks on homogeneous Käahler manifolds. Geom Ded, 2015, 179: 377- 383
|
19 |
Loi A . Holomorphic maps of Hartogs domains in complex space forms. Riv Mat Univ Parma, 2002, 7: 103- 113
|
20 |
Loi A , Zedda M . Käahler Immersions of Käahler Manifolds into Complex Space Forms. Cham: Springer, 2018
|
21 |
Mossa R . A bounded homogeneous domain and a projective manifold are not relatives. Riv Mat Univ Parma, 2013, 4 (1): 55- 59
|
22 |
Su G , Tang Y Y , Tu Z H . Käahler submanifolds of the symmetrized polydisc. C R Acad Sci Paris Ser I, 2018, 356: 387- 394
|
23 |
Tsukada K . Einstein-Käahler submanifolds with codimension two in a complex space form. Math Ann, 1986, 274: 503- 516
|
24 |
Umehara M . Einstein-Käahler submanifolds of complex linear or hyperbolic space. Tohoku Math J, 1987, 39 (3): 385- 389
|
25 |
Umehara M . Käahler submanifolds of complex space forms. Tokyo J Math, 1987, 10 (1): 203- 214
|
26 |
Zhao J , Wang A , Hao Y H . On the holomorphic automorphism group of the Bergman-Hartogs domain. Int J Math, 2015, 26 (8): 1550056
|
27 |
Zedda M. Käahler Immersions of Käahler-Einstein Manifolds into Infinite Dimensional Complex Space Form[D]. Cagliari: Università degli Studi di Cagliari, 2009
|
28 |
Zedda M. Strongly not relative Käahler manifolds. Complex Manifolds, 2016, arXiv: 1608.03163
|