1 |
马知恩, 周义仓, 王稳地, 等. 传染病动力学的数学建模与研究. 北京: 科学出版社, 2004: 42- 56
|
|
Ma Z E , Zhou Y C , Wang W D , et al. Mathematics Modeling and Research of Infectious Disease Dynamics. Beijing: Science Press, 2004: 42- 56
|
2 |
Brauer F , Castillo-Chavez C . Mathematical Models in Population Biology and Epidemiology. New York: Springer, 2012: 1- 60
|
3 |
陈兰荪, 孟新柱, 焦建军. 生物动力学. 北京: 科学出版社, 2009: 150- 440
|
|
Chen L S , Meng X Z , Jiao J J . Biodynamics. Beijing: Science Press, 2009: 150- 440
|
4 |
Zhao X Q . Dynamical Systems in Population Biology. New York: Springer, 2017: 1- 116
|
5 |
王宾国, 邵昶, 李海萍. 仓室传染病模型基本再生数的发展简介. 兰州大学学报(自然科学版), 2016, 52 (3): 380- 384
|
|
Wang B G , Shao C , Li H P . Basic repoduction numbers for compartmetal epidemic models. Journal of Lanzhou University (Natural Sciences), 2016, 52 (3): 380- 384
|
6 |
Liang X , Zhang L , Zhao X Q . Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease). J Dynam Differential Equations, 2019, 31, 1247- 1278
doi: 10.1007/s10884-017-9601-7
|
7 |
Zhao X Q . Basic reproduction ratios for periodic compartmental models with time delay. J Dynam Differential Equations, 2017, 29, 67- 82
doi: 10.1007/s10884-015-9425-2
|
8 |
Bai Z G , Peng R , Zhao X Q . A reaction-diffusion malaria model with seasonality and incubation period. J Math Biol, 2018, 77, 201- 228
doi: 10.1007/s00285-017-1193-7
|
9 |
Lou Y J , Zhao X Q . A theoretical aproach to understanding population dynamics with seasonal developmental durations. J Nonlinear Sci, 2017, 27, 573- 603
doi: 10.1007/s00332-016-9344-3
|
10 |
刘胜强, 陈兰荪. 阶段结构种群生物模型与研究. 北京: 科学出版社, 2010: 8- 15
|
|
Liu S Q , Chen L S . Population Biological Model with Stage Structure Population and Research. Beijing: Science Press, 2010: 8- 15
|
11 |
Zhang L , Wang Z C , Zhao X Q . Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period. J Differential Equations, 2015, 258 (9): 3011- 3036
doi: 10.1016/j.jde.2014.12.032
|
12 |
王双明, 张明军, 樊馨蔓. 一类具时滞的周期logistic传染病模型空间动力学研究. 应用数学和力学, 2018, 39 (2): 226- 238
|
|
Wang S M , Zhang M J , Fan X M . Spatial dynamics of periodic reaction-diffusion epidemic models with delay and logistic growth. Applied Mathematics and Mechanics (Chinese Edition), 2018, 39 (2): 226- 238
|
13 |
Hay S I , Graham A , Rogers D J . Global Mapping of Infectious Diseases:Methods, Examples and Emerging Applications. London: Academic Press, 2006
|
14 |
Paaijmans K P , Read A F , Thomas M B . Understanding the link between malaria risk and climate. Proc Nat Acad Sci USA, 2009, 106 (33): 13844- 13849
doi: 10.1073/pnas.0903423106
|
15 |
王智诚, 王双明. 一类时间周期的时滞反应扩散模型的空间动力学研究. 兰州大学学报:自然科学版, 2013, (4): 535- 540
|
|
Wang Z C , Wang S M . Spatial dynamics of a class of delayed nonlocal reaction-diffusion models with a time period. Journal of Lanzhou University (Natural Sciences), 2013, (4): 535- 540
|
16 |
Magal P , Zhao X Q . Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal, 2005, 37 (1): 251- 275
doi: 10.1137/S0036141003439173
|
17 |
Lou Y J , Zhao X Q . Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete Contin Dyn Syst Ser B, 2009, 12, 169- 186
|
18 |
Posny D , Wang J . Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments. Appl Math Comput, 2014, 242, 473- 490
|