数学物理学报 ›› 2019, Vol. 39 ›› Issue (3): 649-663.

• 论文 • 上一篇    下一篇

跳-扩散模型下期权定价方法及参数校准

许聪聪1,2,许作良1,*()   

  1. 1 中国人民大学数学学院 北京 100872
    2 石家庄铁路职业技术学院 石家庄 050041
  • 收稿日期:2017-12-28 出版日期:2019-06-26 发布日期:2019-06-27
  • 通讯作者: 许作良 E-mail:xuzl@ruc.edu.cn
  • 基金资助:
    国家自然科学基金(11571365);国家自然科学基金(11401162);河北省高等学校科学技术研究重点项目(ZD2019080)

Option Pricing Method and Parameter Calibration for Jump-Diffusion Model

Congcong Xu1,2,Zuoliang Xu1,*()   

  1. 1 School of Mathematics, Renmin University of China, Beijing 100872
    2 Shijiazhuang Institute of Railway Technology, Shijiazhuang 050041
  • Received:2017-12-28 Online:2019-06-26 Published:2019-06-27
  • Contact: Zuoliang Xu E-mail:xuzl@ruc.edu.cn
  • Supported by:
    the NSFC(11571365);the NSFC(11401162);the Key Projects of Science and Technology Research in Colleges and Universities in Hebei Province(ZD2019080)

摘要:

该文对跳-扩散模型下期权定价方法及参数校准问题进行研究.首先,推导出了跳-扩散模型在均值修正等价鞅测度下的风险中性特征函数,利用COS方法对跳-扩散模型进行期权定价,分析了COS方法的定价误差,并通过数值实验验证了COS定价方法的有效性;然后,采用相对熵正则化方法对跳-扩散模型进行参数校准,通过数值模拟实验验证了校准方法的准确性和可靠性;最后,利用S&P500市场数据对模型参数进行校准.结果表明:不同到期日期权数据校准结果有很大不同,Merton跳-扩散模型比Black-Scholes模型能更好的模拟市场数据.

关键词: 跳-扩散模型, 期权定价, 参数校准, COS方法, 正则化

Abstract:

In this paper, the pricing method and parameter calibration of jump-diffusion model are investigated. First, the risk-neutral characteristic function of jump-diffusion model is derived under the mean correctiong equivalent martingale measure. The option under jump-diffusion model is priced by using the COS pricing method. Then, the pricing error of the COS algorithm is analyzed and the effectiveness of the COS pricing method is verified through numerical experiment. Subsequently, the parameters of the jump-diffusion model are calibrated by the relative entropy regularization method. Numerical experiments demonstrate the accuracy and reliability of the proposed method. Finally, the calibration method is tested by analyzing the S&P500 market data. The results show that the values of calibrated parameter are qualitatively for each maturity. Moreover, the results indicate a better fitting to the market data for the Merton jump-diffusion model in comparison to the Black-Scholes model.

Key words: Jump-diffusion models, Option pricing, Parameter calibration, COS method, Regularization

中图分类号: 

  • O211.6