1 |
Balan R , Tudor C A . The stochastic heat equation with a fractional-colored noise:existence of the solution. ALEA Lat Am J Probab Math Stat, 2008, 4: 57- 87
|
2 |
Berman S M . Local nondeterminism and local times of Gaussian processes. Indiana Univ Math J, 1973, 23: 69- 94
doi: 10.1512/iumj.1974.23.23006
|
3 |
Dalang R C . Extending martingale measure stochastic integral with application to spatially homogeneous s.p.d.e.'s. Electron J Probab, 1999, 4: 1- 29
doi: 10.1214/ECP.v4-999
|
4 |
Swanson J . Variations of the solution to a stochastic heat equation. Ann Probab, 2007, 35: 2122- 2159
doi: 10.1214/009117907000000196
|
5 |
Houdré C , Villa J . An example of infinite dimensional quasi-helix. Comtemp Math, 2003, 336: 195- 202
|
6 |
Russo F , Tudor C A . On the bifractional Brownian motion. Stochastic Process Appl, 2006, 5: 830- 856
|
7 |
Tudor C A , Xiao Y . Sample path properties of bifractional Brownian motion. Bernoulli, 2007, 13: 1023- 1052
doi: 10.3150/07-BEJ6110
|
8 |
Yan L , Gao B , Liu J . The Bouleau-Yor identity for a bi-fractional Brownian motion. Stochastics, 2014, 86: 382- 414
doi: 10.1080/17442508.2013.797424
|
9 |
Nualart D , Ortiz-Latorre S . Intersection local time for two indepandent fractional Brownian motions. J Theoret Probab, 2007, 20: 759- 767
doi: 10.1007/s10959-007-0106-x
|
10 |
Wu D , Xiao Y . Regularity of intersection local times of fractional Brownian motions. J Theoret Probab, 2010, 23: 972- 1001
doi: 10.1007/s10959-009-0221-y
|
11 |
Rosen J . The intersection local time of fractional Brownian motion in the plane. J Multivar Anal, 1987, 23: 37- 46
doi: 10.1016/0047-259X(87)90176-X
|
12 |
Hu Y . On the self-intersection local time of fractional Brownian motions-via chaos expansion. J Math Kyoto Univ, 2001, 41: 233- 250
doi: 10.1215/kjm/1250517630
|
13 |
Hu Y , Nualart D . Renormalized self-intersection local time for fractional Brownian motions. Ann Probab, 2005, 33: 948- 983
doi: 10.1214/009117905000000017
|
14 |
Yan L , Yu X . Derivative for self-intersection local time of multidimensional fractional Brownian motion. Stochastics, 2015, 87: 966- 999
doi: 10.1080/17442508.2015.1019883
|
15 |
Jiang Y , Wang Y . Self-intersection local times and collision local times of bifractional Brownian motions. Sci China Ser A, 2009, 52: 1905- 1919
doi: 10.1007/s11425-009-0081-z
|
16 |
Shen G , Yan L . Smoothness for the collision local times of bifractional Brownian motions. Sci China Math, 2011, 54: 1859- 1873
doi: 10.1007/s11425-011-4228-3
|
17 |
Yan L , Liu J , Chen C . On the collision local time of bifractional Brownian motions. Stoch Dyn, 2009, 9: 479- 491
doi: 10.1142/S0219493709002749
|
18 |
Yan L , Shen G . On the collision local time of sub-fractional Brownian Motions. Statist Probab Lett, 2010, 80: 296- 308
doi: 10.1016/j.spl.2009.11.003
|
19 |
Chen Z , Wu D , Xiao Y . Smoothness of local times and self-intersection local times of Gaussian random fields. Front Math China, 2015, 10: 777- 805
doi: 10.1007/s11464-015-0487-6
|
20 |
Bourguin S , Tudor C A . On the law of the solution to a stochastic heat equation with fractional noise in time. Random Oper Stochastic Equations, 2015, 23: 179- 186
|
21 |
Ouahhabi H , Tudor C A . Additive functionals of the solution to fractional stochastic heat equation. J Fourier Anal Appl, 2013, 19: 777- 791
doi: 10.1007/s00041-013-9272-7
|
22 |
Tudor C A , Xiao Y . Sample paths of the solution to the fractional-colored stochastic heat equation. Stoch Dyn, 2017, 17: 1- 20
|
23 |
Tudor C A . Chaos expansion and regularity of the local time of the solution to the stochastic heat equation with additive fractional-colored noise. Taiwanese J Math, 2013, 17: 1765- 1777
doi: 10.11650/tjm.17.2013.2724
|
24 |
Nualart D . Malliavin Calculus and Related Topics. New York: Springer-Verlag, 2006
|
25 |
Tudor C A . Analysis of Variations for Self-Similar Processes:A Stochastic Calculus Approach. New York: Springer, 2013
|