数学物理学报 ›› 2019, Vol. 39 ›› Issue (3): 518-528.

• 论文 • 上一篇    下一篇

三维带有衰减项的不可压缩磁流体力学方程组弱解与强解的研究

李凯*(),杨晗,王凡   

  1. 西南交通大学数学学院 成都 611756
  • 收稿日期:2018-04-12 出版日期:2019-06-26 发布日期:2019-06-27
  • 通讯作者: 李凯 E-mail:1033166048@qq.com
  • 基金资助:
    国家自然科学基金(11701477)

Study on Weak Solution and Strong Solution of Incompressible MHD Equations with Damping in Three-Dimensional Systems

Kai Li*(),Han Yang,Fan Wang   

  1. School of Mathematics, Southwest Jiaotong University, Chengdu 611756
  • Received:2018-04-12 Online:2019-06-26 Published:2019-06-27
  • Contact: Kai Li E-mail:1033166048@qq.com
  • Supported by:
    the NSFC(11701477)

摘要:

论文研究了带有衰减项的磁流体力学方程组的柯西问题.当$\beta \ge 1$及初值${u_0}$, $ {b_0} \in {L^2}({{\mathbb{R} ^3}})$时,采用Galerkin方法证明了方程组存在全局弱解.并且当初值${u_0} \in H_0^1 \cap {L^{\beta + 1}}({{\mathbb{R} ^3}})$, ${b_0} \in H_0^1({{\mathbb{R} ^3}})$时,可以得到方程组存在唯一局部强解.

关键词: 磁流体力学方程组, 衰减项, 弱解, 强解

Abstract:

In this paper, the Cauchy problem of the MHD equations with damping is studied. When $\beta \ge 1$ and initial data satisfy ${u_0}$, ${b_0} \in {L^2}({{\mathbb{R} ^3}})$, the Galerkin method is used to prove the global weak solution of the equations. When the initial data satisfy ${u_0} \in H_0^1 \cap {L^{\beta + 1}}({{\mathbb{R} ^3}})$, ${b_0} \in H_0^1({{\mathbb{R} ^3}})$, it is possible to obtain a unique local strong solution for the equation group.

Key words: MHD equations, Damping, Weak solutions, Strong solutions

中图分类号: 

  • O175.29