1 |
Chen P J , Gurtin M E . On a theorey of heat conduction involving two temperatures. Z Angew Math Phys, 1968, 19 (4): 614- 627
doi: 10.1007/BF01594969
|
2 |
Padrón V . Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation. Trans Am Math Soc, 2004, 356 (7): 2739- 2756
doi: 10.1090/S0002-9947-03-03340-3
|
3 |
Barenblatt G I , Zheltov I P , Kochina I N . Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Math Mech, 1960, 24 (5): 1286- 1303
doi: 10.1016/0021-8928(60)90107-6
|
4 |
Shang Y D , Guo B L . Approximate inertial manifolds for the nonlinear Sobolev-Galpern equations. Acta Math Sci, 2004, 24 (1): 105- 115
|
5 |
Cao Y , Nie Y . Blow-up of solutions of the nonlinear Sobolev equation. Appl Math Lett, 2014, 28: 1- 6
doi: 10.1016/j.aml.2013.09.001
|
6 |
Gurtin M E . Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D, 1966, 92 (3/4): 178- 192
|
7 |
Qu C Y , Cao Y . Global existence of solutions for a viscous Cahn-Hilliard equation with gradient dependent potentials and sources. Indian Acad Sci (Math Sci), 2013, 123 (4): 499- 513
doi: 10.1007/s12044-013-0146-3
|
8 |
Huang R , Yin J X , Li Y H , Wang C P . Global existence and blow-up of solutions to multi-dimensional $(n \le 5)$ viscous Cahn-Hilliard equation. Northeasthern Math J, 2005, 21 (3): 371- 378
|
9 |
Liu C C , Zhou J , Yin J X . A note on large time behaviour of solutions for viscous Cahn-Hilliard equation. Acta Math Sci, 2009, 29 (5): 1216- 1224
doi: 10.1016/S0252-9602(09)60098-9
|
10 |
Zhao X P , Liu C C . On the existence of global attractor for 3D viscous Cahn-Hilliard equation. Acta Appl Math, 2014, 138 (1): 199- 212
|
11 |
Ciptian Gal G , Grasselli M . Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete Cont Dyn B, 2013, 18 (6): 1581- 1610
doi: 10.3934/dcdsb
|
12 |
Huang R , Wang Z J . Blow-up of solutions to the viscous Cahn-Hilliard equation with concentration dependent viscosity. J Jilin Universty, 2011, 49 (3): 471- 474
|
13 |
Baghaei K , Hesaaraki K . Blow-up phenomena for a system of semilinear parabolic equations with nonlinear boundary conditions. Math Meth Appl Sci, 2015, 38 (3): 527- 536
doi: 10.1002/mma.v38.3
|
14 |
Payne L E , Philippin G A , Vernier Piro S . Blow-up phenomena for a semilinear paraboic equation with nonlinear boundary condition, I. Z Angew Math Phys, 2010, 61: 999- 1007
doi: 10.1007/s00033-010-0071-6
|
15 |
Luo P . Blow-up phenomena for a pseudo-parabolic equation. Math Meth Appl Sci, 2015, 38 (12): 2636- 2641
doi: 10.1002/mma.v38.12
|
16 |
Di F H , Shang Y D , Peng X M . Blow-up phenomena for a pseudo-parabolic equation with variable exponents. Appl Math Lett, 2017, 64: 67- 73
doi: 10.1016/j.aml.2016.08.013
|
17 |
Peng X M , Shang Y D , Zheng X X . Blow-up phenomena for some nonlinear pseudo-paraboic equations. Appl Math Lett, 2016, 56: 17- 22
doi: 10.1016/j.aml.2015.12.005
|
18 |
Yang L , Liang F . Bounds for blow-up time in a semilinear pseudo-parabolic equation with nonlocal source. J Inequal Appl, 2016, 2016 (1): 229
doi: 10.1186/s13660-016-1171-4
|
19 |
Long Q F , Chen J Q . Blow-up phenomena for a nonlinear pseudo-parabolic equation with nonlocal source. Appl Math Lett, 2017, 74: 181- 186
doi: 10.1016/j.aml.2017.06.006
|