1 |
Ambrosetti A , Colorado E . Bound and ground states of coupled nonlinear Schrödinger equations. C R Math Acad Sci Paris, 2006, 342 (7): 453- 458
doi: 10.1016/j.crma.2006.01.024
|
2 |
Bartsch T , Dancer N , Wang Z . A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc Var PDE, 2010, 37 (3/4): 345- 361
|
3 |
Dancer N , Wei J , Weth T . A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann Inst H Poincaré Anal Non Linéaire, 2010, 27 (3): 953- 969
doi: 10.1016/j.anihpc.2010.01.009
|
4 |
Liu Z , Wang Z . Multiple bound states of nonlinear Schrödinger systems. Comm Math Phys, 2008, 282 (3): 721- 731
doi: 10.1007/s00220-008-0546-x
|
5 |
Lin T , Wei J . Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbb{R} ^n$, $n \leq 3$. Comm Math Phys, 2005, 255 (3): 629- 653
doi: 10.1007/s00220-005-1313-x
|
6 |
Wei J , Weth T . Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch Ration Mech Anal, 2008, 190 (1): 83- 106
doi: 10.1007/s00205-008-0121-9
|
7 |
Sato Y , Wang Z . On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system. Ann Inst H Poincaré Anal Non Linéaire, 2013, 30 (1): 1- 22
doi: 10.1016/j.anihpc.2012.05.002
|
8 |
Maia L , Montefusco E , Pellacci B . Infinitely many nodal solutions for a weakly coupled nonlinear Schrödinger system. Comm Comtemp Math, 2008, 10 (5): 651- 669
doi: 10.1142/S0219199708002934
|
9 |
Wei J , Yao W . Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Comm Pure Appl Anal, 2012, 11 (3): 1003- 1011
|
10 |
Tavares H , Terracini S . Sign-changing solutions of competition diffusion elliptic systems and optimal partition problems. Ann I H Poincaré AN, 2012, 29: 279- 300
doi: 10.1016/j.anihpc.2011.10.006
|
11 |
Zhang J, Zou W M. Infinitely many sign-changing solutions for a coupled Schrödinger system with subcritical exponent. Submitted
|
12 |
Noris B , Tavares H , Terracini S , et al. Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Comm Pure Appl Math, 2010, 63 (3): 267- 302
doi: 10.1002/cpa.v63:3
|