1 |
Arthi G , Park J H , Jung H Y . Existence and exponential stability for neutral stochastic integro-differential equations with impulses driven by a fractional Brownian motion. Commun Nonlinear Sci Numer Simul, 2016, 32: 145- 157
doi: 10.1016/j.cnsns.2015.08.014
|
2 |
Chauhan A , Daba J . Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition. Commun Nonlinear Sci Numer Simul, 2014, 19 (4): 821- 829
doi: 10.1016/j.cnsns.2013.07.025
|
3 |
Chadha A , Pandey D N . Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay. Nonlinear Anal, 2015, 128: 149- 175
doi: 10.1016/j.na.2015.07.018
|
4 |
Dabas J , Chauhan A . Existence and uniqueness of mild solution for an impulsive neutral fractional integrodifferential equations with infinity delay. Math Comput Modell, 2013, 57 (3): 754- 763
|
5 |
Ge F D , Zhou H C , Kou C H . Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique. Appl Math Comput, 2016, 275: 107- 120
|
6 |
Lin Z , Wang J R , Wei W . Multipoint BVPs for generalized impulsive fractional differential equations. Appl Math Comput, 2015, 258: 608- 616
|
7 |
Pierri M , O'Regan D , Rolnik V . Existence of solutions for semilinear differential equations with not instantaneous impulses. Appl Math Comput, 2013, 219: 6743- 6749
|
8 |
Tomar N K , Dabas J . Controllability of impulsive fractional order semilinear evolution equations with nonlocal conditions. J Non Evol Equ Appl, 2012, 5: 57- 67
|
9 |
Yang X J , Li C D , Huang T W , Song Q K . Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl Math Comput, 2017, 293: 416- 422
|
10 |
Yan Z M . Existence of solutions for nonlocal impulsive partial functional integrodifferential equations via fractional operators. J Comput Appl Math, 2011, 235 (8): 2252- 2262
doi: 10.1016/j.cam.2010.10.022
|
11 |
Zhang G L , Song M H , Liu M Z . Exponential stability of the exact solutions and the numerical solutions for a class of linear impulsive delay differential equations. J Comput Appl Math, 2015, 285: 32- 44
doi: 10.1016/j.cam.2015.01.034
|
12 |
Chen P Y , Zhang X P , Li Y X . Study on fractional non-autonomous evolution equations with delay. Comput Math Appl, 2017, 73 (5): 794- 803
doi: 10.1016/j.camwa.2017.01.009
|
13 |
Ouyang Z G . Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay. Comput Math Appl, 2011, 61 (4): 860- 870
doi: 10.1016/j.camwa.2010.12.034
|
14 |
Zhu B , Liu L S , Wu Y H . Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay. Appl Math Lett, 2016, 61: 73- 79
doi: 10.1016/j.aml.2016.05.010
|
15 |
Zhu B , Liu L S , Wu Y H . Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay. Comput Math Appl, 2016
doi: 10.1016/j.camwa.2016.01.028
|
16 |
Araya D , Lizama C . Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal, 2008, 69 (11): 3692- 3705
doi: 10.1016/j.na.2007.10.004
|
17 |
Debbouche A , Baleanu D . Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput Math Appl, 2011, 62 (3): 1442- 1450
doi: 10.1016/j.camwa.2011.03.075
|
18 |
Pazy A . Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Applied Mathematical Sciences, 1983
|
19 |
Guo D J , Lakshamikantham V , Liu X Z . Nonlinear Integral Equations in Abstract Spaces. Dordrecht: Kluwer Academic, 1996
|