1 |
Bouard A , Hayashi N , Naumkin P I , Saut J C . Scattering problem and asymptotics for a relativistic nonlinear Schrödinger equation. Nonlinearity, 1999, 12: 1415- 1425
doi: 10.1088/0951-7715/12/5/313
|
2 |
Bouard A , Hayashi N , Saut J C . Global existence of small solutions to a relativistic nonliear Schrödinger equation. Commum Math Phys, 1997, 189: 73- 105
doi: 10.1007/s002200050191
|
3 |
Berestycki H , Lions P L . Nonlinear scalar field equations, I existence of a ground state. Arch Ration Mech Anal, 1983, 82 (4): 313- 345
doi: 10.1007/BF00250555
|
4 |
Chen X L , Sudan R N . Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse. Phys Rev Lett, 1993, 70: 2082- 2085
doi: 10.1103/PhysRevLett.70.2082
|
5 |
Cheng Y K , Yang J . The existence result for a relativistic nonlinear Schrödinger equation. J Math Phys, 2015, 56: 3262- 3267
|
6 |
Cheng Y K , Yang J . Positive solution to a class of relativistic nonlinear Schrödinger equation. J Math Anal Appl, 2014, 411: 665- 674
doi: 10.1016/j.jmaa.2013.10.006
|
7 |
Cheng Y K , Yao Y X . Soliton solutions to a class of relativistic nonlinear Schrödinger equations. Appl Math Comput, 2015, 260: 342- 350
|
8 |
Jeanjean L , Tanaka K . A remark in least energy solutions in ${{\mathbb{R}}^N}$. Proc Ams Math Soc, 2003, 131: 2399- 2408
doi: 10.1090/S0002-9939-02-06821-1
|
9 |
Lions P L . The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1 and 2. Ann I H Anal Nonlinear, 1984, 1: 109- 283 109-145, 223-283
|
10 |
Mao A M , Luan S H . Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems. J Math Anal Appl, 2011, 383: 239- 243
doi: 10.1016/j.jmaa.2011.05.021
|
11 |
Mao A M , Jing R N , Luan S X , Chu J L , Kong Y . Some nonlocal elliptic problem involving positive parameter. Topological Meth Nonlinear Anal, 2013, 42 (1): 207- 220
|
12 |
Shen Y T , Wang Y J . Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal, 2013, 80: 194- 201
doi: 10.1016/j.na.2012.10.005
|
13 |
Shen Y T , Wang Y J . Standing waves for a class of quasilinear Schrödinger equations. Complex Variables and Elliptic Equ, 2016, 61 (6): 817- 842
doi: 10.1080/17476933.2015.1119818
|
14 |
Shen Y T , Wang Y J . A class of generalized quasilinear Schrödinger equations. Commun Pure Appl Anal, 2016, 15 (3): 853- 870
|
15 |
Zeng X Y , Zhang Y M . Existence and uniqueness of normalized solutions for the Kirchhoff equation. Applied Math Lett, 2017, 74: 52- 59
doi: 10.1016/j.aml.2017.05.012
|
16 |
Zeng X Y , Zhang Y M , Zhou H S . Existence and stability of standing waves for a coupled nonlinear Schrödinger system. Acta Math Sci, 2015, 35B (1): 45- 70
|