数学物理学报 ›› 2018, Vol. 38 ›› Issue (5): 864-872.

• 论文 • 上一篇    下一篇

von Neumann代数上的Lie可导映射

杨丽春(),安润玲*()   

  1. 太原理工大学数学学院 太原 030024
  • 收稿日期:2017-05-08 出版日期:2018-11-09 发布日期:2018-11-09
  • 通讯作者: 安润玲 E-mail:1344307489@qq.com;runlingan@aliyun.com
  • 作者简介:杨丽春, E-mail:1344307489@qq.com
  • 基金资助:
    国家自然科学基金(11001194);国家自然科学基金(10771157);山西省国际合作项目(2014081027-2)

Lie Derivable Maps on von Neumann Algebras

Lichun Yang(),Runling An*()   

  1. College of Mathematics, Taiyuan University, Taiyuan 030024
  • Received:2017-05-08 Online:2018-11-09 Published:2018-11-09
  • Contact: Runling An E-mail:1344307489@qq.com;runlingan@aliyun.com
  • Supported by:
    the NSFC(11001194);the NSFC(10771157);the International Cooperation Project of Shanxi Province(2014081027-2)

摘要:

A是不含交换中心投影的von Neumann代数,投影PA使得P_=0,P¯=I.称可加映射δ:AAΩA Lie可导,若δ([A,B])=[δ(A),B]+[A,δ(B)], A,BA, AB=Ω.该文证明,若ΩA满足PΩ=Ω,则δΩ Lie可导当且仅当存在导子τ:AA和可加映射f:AZ(A)使得δ(A)=τ(A)+f(A),AA,其中f([A,B])=0, A,BA, AB=Ω.特别地,若A是因子von Neumann代数, ΩA满足ker(Ω)0ran(Ω)¯H,则可加映射δ:AAΩ Lie可导当且仅当δ有上述形式.

关键词: von Neumann代数, Lie导子, Lie可导映射, 中心覆盖

Abstract:

Let A be a von Neumann algebra with no central abelian projections, PA be a projection with P_=0 and P¯=I. An additive map δ:AA is said to be Lie derivable at ΩA, if δ([A,B])=[δ(A),B]+[A,δ(B)] for any A,BA with AB=Ω. We show that, if ΩA such that PΩ=Ω, then δ is Lie derivable at Ω if and only if there exist a derivation τ:AA and and additive map f:AZ(A) vanishing at commutators [A,B] with AB=Ω such that δ(A)=d(A)+f(A),AA. In particular, if A is a factor von Neuamnn algebra and ΩA such that ker(Ω)0 or ran(Ω)¯H, then δ is Lie derivable at Ω if and only if it has the above form.

Key words: von Neumann algebras, Lie derivations, Lie derivable maps, Central carrier

中图分类号: 

  • O177.1