数学物理学报 ›› 2018, Vol. 38 ›› Issue (5): 864-872.

• 论文 • 上一篇    下一篇

von Neumann代数上的Lie可导映射

杨丽春(),安润玲*()   

  1. 太原理工大学数学学院 太原 030024
  • 收稿日期:2017-05-08 出版日期:2018-11-09 发布日期:2018-11-09
  • 通讯作者: 安润玲 E-mail:1344307489@qq.com;runlingan@aliyun.com
  • 作者简介:杨丽春, E-mail:1344307489@qq.com
  • 基金资助:
    国家自然科学基金(11001194);国家自然科学基金(10771157);山西省国际合作项目(2014081027-2)

Lie Derivable Maps on von Neumann Algebras

Lichun Yang(),Runling An*()   

  1. College of Mathematics, Taiyuan University, Taiyuan 030024
  • Received:2017-05-08 Online:2018-11-09 Published:2018-11-09
  • Contact: Runling An E-mail:1344307489@qq.com;runlingan@aliyun.com
  • Supported by:
    the NSFC(11001194);the NSFC(10771157);the International Cooperation Project of Shanxi Province(2014081027-2)

摘要:

${\cal A}$是不含交换中心投影的von Neumann代数,投影$P\in{\cal A}$使得$\underline{P}=0, \overline{P}=I$.称可加映射$\delta:{\cal A}\rightarrow {\cal A}$$\Omega\in{\cal A}$ Lie可导,若$\delta([A, B])=[\delta(A), B]+[A, \delta(B)], $ $ \forall A, B\in {\cal A}, $ $ AB=\Omega$.该文证明,若$\Omega\in{\cal A}$满足$P\Omega=\Omega$,则$\delta$$\Omega$ Lie可导当且仅当存在导子$\tau:{\cal A} \rightarrow {\cal A}$和可加映射$f: {\cal A}\rightarrow {\cal Z}({\cal A})$使得$\delta(A)=\tau(A)+f(A), \forall A\in {\cal A}$,其中$f([A, B])=0, $ $ \forall A, B\in {\cal A}, $ $AB=\Omega$.特别地,若${\cal A}$是因子von Neumann代数, $\Omega\in {\cal A}$满足$\mbox{ker}(\Omega)\neq {0}$$\overline{\mbox{ran}(\Omega)}\neq H$,则可加映射$\delta: {\cal A}\rightarrow {\cal A}$$\Omega$ Lie可导当且仅当$\delta$有上述形式.

关键词: von Neumann代数, Lie导子, Lie可导映射, 中心覆盖

Abstract:

Let ${\cal A}$ be a von Neumann algebra with no central abelian projections, $P\in{\cal A}$ be a projection with $\underline{P}=0$ and $\overline{P}=I$. An additive map $\delta:{\cal A}\rightarrow{\cal A}$ is said to be Lie derivable at $\Omega\in{\cal A}$, if $\delta([A, B])=[\delta(A), B]+[A, \delta(B)]$ for any $A, B\in{\cal A}$ with $AB=\Omega.$ We show that, if $\Omega\in{\cal A}$ such that $P\Omega=\Omega$, then $\delta$ is Lie derivable at $\Omega$ if and only if there exist a derivation $\tau:{\cal A} \rightarrow {\cal A}$ and and additive map $f: {\cal A}\rightarrow {\cal Z}({\cal A})$ vanishing at commutators $[A, B]$ with $AB=\Omega$ such that $\delta(A)=d(A)+f(A), \forall A\in {\cal A}.$ In particular, if ${\cal A}$ is a factor von Neuamnn algebra and $\Omega\in {\cal A}$ such that $\mbox{ker}(\Omega)\neq {0}$ or $\overline{\mbox{ran}(\Omega)}\neq H, $ then $\delta$ is Lie derivable at $\Omega$ if and only if it has the above form.

Key words: von Neumann algebras, Lie derivations, Lie derivable maps, Central carrier

中图分类号: 

  • O177.1