数学物理学报 ›› 2018, Vol. 38 ›› Issue (4): 625-630.

• 论文 •    下一篇

具有一致相对尺寸的流盒定理

韩波   

  1. 北京航空航天大学数学与系统科学学院 北京 100191
  • 收稿日期:2017-03-20 修回日期:2017-09-27 出版日期:2018-08-26 发布日期:2018-08-26
  • 作者简介:韩波,E-mail:hanbo@buaa.edu.cn
  • 基金资助:
    国家自然科学基金(11671025,11571188)和中央高校基本科研业务费

A Flowbox Theorem with Uniform Relative Bound

Han Bo   

  1. School of Mathematics and Systems Science, Beihang University, Beijing 100191
  • Received:2017-03-20 Revised:2017-09-27 Online:2018-08-26 Published:2018-08-26
  • Supported by:
    Supported by the NSFC (11671025, 11571188) and the Fundamental Research Funds for the Central Universities

摘要: 该文讨论了Banach空间中Lipschitz向量场的流盒定理,证明了:若X是一个以L为Lipschitz常数的李氏向量场,则存在与L相关的一个一致常数r0,使得对X的任意常点x处,存在一个大小为r0||Xx)||的流盒,相应的流盒映射的李氏同胚的Lipschitz常数大小也有一致的控制.

关键词: Lipschitz向量场, 流盒, Gronwall不等式

Abstract: In this paper, we give a flowbox theorem for the Lipschitz vector fields on a Banach spcace. We prove:if X is a Lipschitz vector field with a Lipschitz constant L, then there is a constant r0 associated to L only such that for any regular point x of X, there is a flowbox with size r0||X(x)||, and the Lipschitz constants of the respected lipeomorphism in the flowbox theorem has a uniform bound.

Key words: Lipschitz vector fields, Flowbox theorem, Gronwall inequality

中图分类号: 

  • O193