数学物理学报 ›› 2018, Vol. 38 ›› Issue (1): 174-189.

• 论文 • 上一篇    下一篇

状态反馈脉冲控制Holling-Tanner系统周期解的存在性*

梁志清, 曾夏萍, 周泽文, 庞国萍, 黄军华   

  1. 玉林师范学院 数学与统计学院, 广西高校 复杂系统优化与大数据处理重点实验室 广西 玉林 537000
  • 收稿日期:2016-12-13 修回日期:2017-04-16 出版日期:2018-02-26 发布日期:2018-02-26
  • 通讯作者: 梁志清 E-mail:lzqysl@sohu.com
  • 基金资助:
    国家自然科学基金(61364020)和玉林师范学院重点科研项目(2015YJZD02)

Existence of Periodic Solution of Holling-Tanner System with State Feedback Impulsive Control

Liang Zhiqing, Zeng Xiaping, Zhou Zewen, Pang Guoping, Huang Junhua   

  1. Guangxi Colleges and Universities Key Lab of Complex System Optimization and Large Data Processing, College of Mathematics and Statistics, Yulin Normal University, Guangxi Yulin 537000
  • Received:2016-12-13 Revised:2017-04-16 Online:2018-02-26 Published:2018-02-26
  • Supported by:
    Supported by the NSFC (61364020) and the Major Research Programmes of Yulin Normal University (2015YJZD02)

摘要: 该文研究具有状态反馈脉冲控制的Holling-Tanner系统.在连续系统有唯一极限环及正平衡点为不稳定的焦点的前提下,利用微分方程几何理论、后继函数及数学分析的方法,获得脉冲系统阶1周期解的存在性、唯一性及轨道稳定性的充分条件.利用数值模拟验证主要结论,并且数值结果显示对某些参数在连续系统的极限环内存在脉冲系统的阶k周期解.

关键词: Holling-Tanner系统, 极限环, 后继函数, 阶1周期解, 状态反馈脉冲控制

Abstract: In this paper, we investigate the Holling-Tanner model with state feedback impulsive control. On the premise that the continuous system has a unique limit cycle and the positive equilibrium point is an unstable focus point, by means of the geometry theory of semi-continuous dynamic system, successor function method and mathematical analysis method, we obtain sufficient conditions for the existence, uniqueness and orbital stability of order 1 periodic solution of the impulsive system. The main conclusions are verified by numerical simulation. Moreover, the numerical results show that the impulsive system has order k periodic solutions within the limit cycle for some parameters.

Key words: Holling-Tanner model, Limit cycle, Successor function, Order 1 periodic solution, State feedback impulsive control

中图分类号: 

  • O175