[1] Leslie P H. Some further notes on the use of matrices in population mathematics. Biometrika, 1948, 35(3/4):213-245 [2] Leslie P H, Gower J C. The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika, 1960, 47(3/4):219-231 [3] Hsu S B, Huang T W. Global stability for a class of predator-prey systems. SIAM J Appl Math, 1995, 55(3):763-783 [4] Hsu S B, Huang T W. Uniqueness of limit cycles for a predator-prey system of holling and leslie type. Canadian Appl Math Quaq, 1998, 6(2):91-117 [5] Feng P, Kang Y. Dynamics of a modified Leslie-Gower model with double Allee effects. Nonlinear Dyn, 2015, 80(1):1051-1062 [6] Yang R Z, Zhang C R. Dynamics in a diffusive modified Leslie-Gower predator-prey model with time delay and prey harvesting. Nonlinear Dyn, 2017, 87(2):863-878 [7] Liang Z Q, Pan H W. Qualitative analysis of a ratio-dependent Holling-Tanner model. J Math Anal Appl, 2007, 334(2):954-964 [8] 梁志清, 陈兰荪. 离散Leslie捕食与被捕食系统周期解的稳定性. 数学物理学报, 2006, 26A(4):634-640Liang Z Q, Chen L S. Stability of periodic solution for a discrete Leslie predator-prey system. Acta Mathematica Scientia, 2006, 26A(4):634-640 [9] Holling C S. Functional response of predators to prey density and its role in mimicry and population regulation. Mem Ent Soc Can, 1965, 97(45):1-60 [10] Tanner J T. The stability and the intrinsic growth rates of prey and predator populations. Ecology, 1975, 56(4):855-867 [11] Murray J D. Mathematical Biology. Berlin:Springer-Verlag, 1989 [12] May R M. Stability and Complexity in Ecosystems. Princeton:Princeton University Press, 2001 [13] Gasull A, Kooij R E, Torregrosa J. Limit cycles in the Holling-Tanner model. Publ Mat, 1997, 41:149-167 [14] Saez E, Gonzalez-Olivares E. Dynamics of predator-prey model. Siam J Appl Math, 1999, 59(5):1867-1878 [15] Stern V M, Smith R F, Rosch V D R, Hagen K S. The integrated control concept. Hilgardia, 1959, 29:81-101 [16] Bainov D D, Simeonov P S. Impulsive Differential Equations:Periodic Solutions and Applications. England:Longman, 1993 [17] Bainov D D, Simeonov P S. Impulsive Differential Equations:Asymptotic Properties of the Solutions. Singapore:World Scientific, 1995 [18] Simenov P S, Bainov D D. Orbital stability of the periodic solutions of autonomous systems with impulse effect. Int J Systems Sci, 1989, 19(12):2561-2585 [19] Bonotto E M, Federson M. Limit sets and the Poincar\'e-Bendixson theorem in impulsive semi-dynamical systems. J Differential Equ, 2008, 244(9):2334-2349 [20] 陈兰荪. 害虫治理与半连续动力系统几何理论. 北华大学学报(自然科学版), 2011, 12(1):1-9 Chen L S. Pest control and geometric theory of semi-continuous dynamical system. J Beihua Univ (Nat Sci), 2011, 12(1):1-9 [21] 陈兰荪. 半连续动力系统理论及应用. 玉林师范学院学报(自然科学版), 2013, 34(2):1-10Chen L S. Theory and application of semi-continuous dynamical system. J Yulin Normal Univ (Nat Sci), 2013, 34(2):1-10 [22] Liang Z Q, Pang G P, Zen X P, Liang Y H. Qualitative analysis of a predator-prey system with mutual interference and impulsive state feedback control. Nonlinear Dyn, 2017, 87(3):1495-1509 [23] Pang G P, Chen L S. Periodic solution of the system with impulsive state feedback control. Nonlinear Dyn, 2014, 78(1):743-753 ewpage |