数学物理学报 ›› 2018, Vol. 38 ›› Issue (1): 168-173.

• 论文 • 上一篇    下一篇

具异号非线性源项的热方程淬火解和仿真

牛屹1,2, 彭秀艳2, 王兴昌2, 于涛3, 杨延冰3   

  1. 1. 山东师范大学信息科学与工程学院 济南 250001;
    2. 哈尔滨工程大学自动化学院 哈尔滨 150001;
    3. 哈尔滨工程大学理学院 哈尔滨 150001
  • 收稿日期:2016-06-06 修回日期:2017-06-12 出版日期:2018-02-26 发布日期:2018-02-26
  • 作者简介:牛屹,niuyipde@163.com;杨延冰,yanyee_ny07@126.com
  • 基金资助:
    国家自然科学基金(61503091)

Quenching Solution for Nonlinear Heat Equation with Opposite Absorption Sources and Its Simulation

Niu Yi1,2, Peng Xiuyan2, Wang Xingchang2, Yu Tao3, Yang Yanbing3   

  1. 1. School of information science and engineering, Shandong Normal University, Jinan 250001;
    2. College of Automation, Harbin Engineering University, Harbin 150001;
    3. College of Science, Harbin Engineering University, Harbin 150001
  • Received:2016-06-06 Revised:2017-06-12 Online:2018-02-26 Published:2018-02-26
  • Supported by:
    Supported by the NSFC(61503091)

摘要: 该文研究了一类具异号非线性源项的反应扩散方程的初边值问题.得到了该问题的淬火现象,并且估计了其淬火时间.进一步地,利用MATLAB对淬火现象进行仿真.

关键词: 反应扩散方程, 狄里克雷边界, 淬火时间, 仿真

Abstract: In this paper, we consider initial boundary value problems for a class of nonlinear reaction-diffusion equations with both a positive and negative absorption sources. We obtain the quenching phenomenon of the above problem, and estimate its quenching time. Further, we simulate by the MATLAB.

Key words: Reaction-diffusion equation, Dirichlet boundary, Quenching time, Simulate

中图分类号: 

  • O175.2