数学物理学报 ›› 2018, Vol. 38 ›› Issue (1): 61-70.

• 论文 • 上一篇    下一篇

RN中Schrödinger-Poisson方程约束极小元的存在性

朱新才   

  1. 中国科学院武汉物理与数学研究所 武汉 430071;中国科学院大学 北京 100049
  • 收稿日期:2016-11-15 修回日期:2017-04-07 出版日期:2018-02-26 发布日期:2018-02-26
  • 作者简介:朱新才,zhuxc68@163.com
  • 基金资助:
    国家自然科学基金(11671394)

Existence of Constrained Minimizers for Schrödinger-Poisson Equations in RN

Zhu Xincai   

  1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071;University of Chinese Academy of Sciences, Beijing 100049
  • Received:2016-11-15 Revised:2017-04-07 Online:2018-02-26 Published:2018-02-26
  • Supported by:
    Supported by the NSFC(11671394)

摘要: 研究变分问题(1.2)约束极小元的存在性.该文对指标p进行了分类,而问题(1.2)极小元的存在性及非存在性依赖于指标p.对任意给定的系数a > 0,当p满足0 < p < (4/N)时,问题(1.2)至少存在一个极小元;而当p>(4/N)时,问题(1.2)不存在极小元.特别地,当p=(4/N)时,问题(1.2)存在极小元当且仅当0 < aa*:=||φ||2(4/N,这里的φx)(在平移的意义下)是方程-Δux)+ux)=u1+(4/Nx),x∈RN唯一的径向对称正解.而当a > a*时,问题(1.2)不存在极小元.

关键词: Schrödinger-Poisson方程, 约束极小元, 存在性

Abstract: In this paper, we concern with the existence of constrained minimizers for the variational problem (1.2). We give a classification of the exponent p determining the existence and nonexistence of minimizers. For any fixed a > 0, (1.2) admits minimizers if 0 < p < (4/N) and there is no minimizer of (1.2) if p > (4/N). Specially, if p=(4/N), the existence of minimizers is then proved if and only if a satisfies 0 < aa*:=||φ||2(4/N), where φ(x) is the unique (up to translations) positive radial solution of -Δ u(x)+u(x)=u1+(4/N)(x) in RN. Moreover, there is no minimizer of (1.2) if a > a*.

Key words: Schrödinger-Poisson Equations, Constrained minimizers, Existence

中图分类号: 

  • O175.2