[1] Ackermann N. On a periodic Schrödinger equation with nonlocal superlinear part. Math Z, 2004, 248:423-443 [2] Alves C O, Yang M. Existence of semiclassical ground state solutions for a generalized Choquard equation. J Differential Equations, 2014, 257:4133-4164 [3] Cao P, Wang J, Zou W. On the standing waves for nonlinear Hartree equation with confining potential. J Math Phys, 2012, 53:003702 [4] Lieb E H. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud Appl Math, 1977, 57:93-105 [5] Lieb E H, Loss M. Analysis. Providence, RI:Amer Math Soc, 1997 [6] Lions P L. The Choquard equation and related questions. Nonlinear Anal, 1980, 4:1063-1073 [7] Lions P L. Compactness and topological methods for some nonlinear variational problems of mathematical physics. Nonth-Holland Math Studies, 1982, 61:17-34 [8] Moroz V, Schaftingen J Van. Ground states of nonlinear Choquard equations:existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265:153-184 [9] Moroz V, Schaftingen J Van. Existence of groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2012, 367:6557-6579 [10] Moroz V, Schaftingen J Van. A guide to the Choquard equation. J Fixed Point Theory Appl, 2017, 19(1):773-813 [11] Pekar S. Untersuchungen Über Die Elektronentheorie Der Kristalle. Berlin:Akademie Verlag, 1954 [12] Penrose R. Quantum computation, entanglement and state reduction. R Soc Lond Phil Trans Ser A, Math Phys Eng Sci, 1998, 356:1927-1939 [13] Souto Marco A S, Lima Romildo N de. Choquard equations with mixed potential. 2015, arXiv:1506.08179 [14] Schafingen J Van, Xia J. Choquard equations under confining external potentials. Nonlinear Diff Equa App, 2016, DOI:10.1007/s00030-016-0424-8 [15] 杨凌燕, 李晓光, 陈樱. 一类Schrödinger-Hartree方程爆破解的门槛条件. 数学物理学报, 2016, 36A(6):1117-1123 Yang L, Li X, Chen Y. A sharp threshold of blow-up of a class of Schrödinger-Hartree equations. Acta Math Sci, 2016, 36A(6):1117-1123 |