数学物理学报 ›› 2018, Vol. 38 ›› Issue (1): 71-82.

• 论文 • 上一篇    下一篇

Ladyzhenskaya流体力学方程组的确定模与确定结点个数估计

张明书1, 朱泽奇2, 赵才地1   

  1. 1. 温州大学数学与信息科学数学学院 浙江温州 325035;
    2. 中国科学院武汉岩土力学研究所 武汉 430071
  • 收稿日期:2016-12-14 修回日期:2017-04-10 出版日期:2018-02-26 发布日期:2018-02-26
  • 通讯作者: 赵才地 E-mail:zhaocaidi2013@163.com
  • 基金资助:
    国家自然科学基金(11271290,51279202)和浙江省自然科学基金(LY17A010011)

Determining Modes and Determining Nodes to the Fluid Flow of Ladyzhenskaya Model

Zhang Mingshu1, Zhu Zheqi2, Zhao Caidi1   

  1. 1. Department of Mathematics and Information Science, Wenzhou University, Zhejiang Wenzhou, 325035;
    2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071
  • Received:2016-12-14 Revised:2017-04-10 Online:2018-02-26 Published:2018-02-26
  • Supported by:
    Supported by the NSFC (11271290, 51279202) and the Natural Science Foundation of Zhejiang Province (LY17A010011)

摘要: 论文给出了二维有界区域上Ladyzhenskaya流体力学方程组的确定模与确定结点的个数估计.结果表明若该方程组的任意两个弱解的前有限个傅立叶模有相同的渐近行为,则这两个解就具有相同的渐近行为;若该方程组的任意两个强解在有限个空间中的点上有相同的渐近行为,则这两个解几乎在整个空间上具有相同的渐近行为.

关键词: Ladyzhenskaya流体力学方程组, 确定模, 确定结点, 渐近行为

Abstract: This article estimates the finite number of determining modes and determining nodes for the fluid flow of Ladyzhenskaya model on two-dimensional bounded smooth domains. The finite number of determining modes implies that the solutions of the addressed fluids are determined completely by their first finite number of Fourier modes. The determining nodes reveals that whenever two different solutions of the fluid have the same asymptotic behavior at finite number of points in the physical space, then they also possess the same asymptotic behavior at almost everywhere points of the physical space.

Key words: Ladyzhenskaya model, Determining modes, Determining nodes, Asymptotic behavior

中图分类号: 

  • O212.62