数学物理学报 ›› 1997, Vol. 17 ›› Issue (S1): 83-89.

• 论文 • 上一篇    下一篇

关于非线性奇异积分微分方程解的延拓

吴浩生1, 刘钧2   

  1. 1. 大连水产学院基础部 大连 116023;
    2. 中国科学院武汉物理与数学所 武汉 430071
  • 收稿日期:1996-03-12 出版日期:1997-12-26 发布日期:1997-12-26

Extension of Solution on Nonlinear Singular Lntegal Differential Eguation

Wu Haoshen1, Liu Jun2   

  1. 1. Dalian College of Fishery. Dalian 116023;
    2. Institute of Wuhan Physics and Mathematics. Academia sinica, Wuhan 430071
  • Received:1996-03-12 Online:1997-12-26 Published:1997-12-26

摘要:

在该文中.研究下面的带柯西核的非线性奇异积分微分方程的解
Lu(t)=Σj=0m[a1(t)u(j)(t)+(1/(πj))∫(K1(t,τ)u(j)(τ)/(τ-1))]=(1/(πi))∫((φ[t,τ,U(τ),λ])/(τ-t)).(1)
u(j)(t0)=u0j(t0Γ,j=0,…,m-1).
这里Γ是简单的李雅普诺夫闭路,u(t)是应当确定的未知函数U(t)={u(t),u(t),…,u(n)(t)1,u0j是某些实数或复数.
(1)型的非线性奇异积分微分方程用插入法或拓扑法在[1]-[5]的论文中已被研究.在[6].[7]的论文中方程(1)的解用李雅鲁诺夫的分析方法来研究.

关键词: 非线性奇异积分, 微分方程的解, 解的挺拓

Abstract:

In this paper,it is investigated the following with Cauchy's kernel
Lu(t)=Σj=0m[a1(t)u(j)(t)+(1/(πj))∫(K1(t,τ)u(j)(τ)/(τ-1))]=(1/(πi))∫((φ[t,τ,U(τ),λ])/(τ-t)).(1)
u(j)(t0)=u0j (t0Γ,j=0,…,m-1) (1).
Where Γ is a simple Liapunov's closed path, u (t) is a nonknown function u(t)={u(t), u(t),…, u(n) (t)}, u0j are some real or complex number. Ref.[1]-[s] applied the interpolation and topological method for the equation (1). By using the Liapunov's method,Ref、[6],[7],studied the solution of equation (1).

Key words: nonlinear singular integral, solution of differential equation, extension of solution