数学物理学报 ›› 1997, Vol. 17 ›› Issue (4): 466-472.

• 论文 • 上一篇    下一篇

S-λ导生的广义Feller算子对无界函数的逼近

赵静辉   

  1. 湖北大学数学系 武汉 430062
  • 收稿日期:1996-11-13 修回日期:1997-01-30 出版日期:1997-08-26 发布日期:1997-08-26
  • 基金资助:
    湖北省自然科学基金

Quantify Behaviors of Approximation Degree to Unbounded Fuctions by Generalized Feller Operators Derived S-λ

Zhao Jinghui   

  1. Hubei University, Wuhan 430062
  • Received:1996-11-13 Revised:1997-01-30 Online:1997-08-26 Published:1997-08-26

摘要: 由导源函数S(x)与扩充因子λ(x)导生的概率型逼近算子(简称PPA算子)是一类内容丰富的广义Feller算子,该文将概率方法与函数论方法相结合,解决了PPA算子对相当广泛的一类无界连续函数的逼近量化问题,并且还得出它们对无界不连续函数的逼近性态,体现了这类算子对无界数逼近的良好性能.结果包含了Khan[1]、Stancu[2]、Levikson[3]和Xu Jihua「4」的若干结果.

关键词: 广义Feller算子, 逼近度, 无界函数, 矩生成函数

Abstract: Applying combination of mathods from probability and fuction theory in the paper we study the quantify estimation of approximation degree to unbounded and continuouns or discontinuous fuctions by generalized Feller operators derived from original fuction S(x)and extending factor λ(x).

Key words: Generalized feller operator, Approximation degree, Unbounded fuctions, Moment generating fuction