数学物理学报 ›› 1997, Vol. 17 ›› Issue (3): 341-347.

• 论文 • 上一篇    下一篇

C([-π,π]n)上多项式逼近的一些结果

刘颖范   

  1. 南京航空航天大学 南京 210016
  • 收稿日期:1995-12-01 修回日期:1996-05-22 出版日期:1997-06-26 发布日期:1997-06-26
  • 基金资助:
    航空基础科学基金

Some Results of Multivariate Polynomial Approximation on C([-π,π]n)

Liu Yingfan   

  1. Nanjing University of Aeronautics and Astronautics, Nanjing 210016
  • Received:1995-12-01 Revised:1996-05-22 Online:1997-06-26 Published:1997-06-26

摘要: 首先给出C([-π,π]n)上连续函数算子序列的一个逼近定理及其在多元多项式逼近方面的一个推论.其次,在所获结果的基础上,再利用高维乘积核构造非正的n维Rogosinski型核及相应的逼近算子,进而又得到了以二阶连续模为逼近阶的高维Rogosinski型逼近定理,

关键词: 高维积分核, 连续模, 二阶连续模, Rososinski型核

Abstract: This paper constracts some n dimensional nonpositive Rogosinski-type kernal on Rn and some relative nonpositive polynomial approximation operators on the periodic continu ous function space C([-π,π]n), and has obtained certain higher dimensional Rogosinskitype approximation theorem under the approximate error described by the second order continuous module on this function space.

Key words: Higher dimensional integral kernal, Continuous module, Second order continuous module, C-norm, Rogosinski-type kernal