数学物理学报 ›› 2017, Vol. 37 ›› Issue (4): 714-729.

• 论文 • 上一篇    下一篇

用分离的Delta函数法研究非对称Keyfitz-Kranzer系统中Delta激波的交互性

李华惠, 邵志强   

  1. 福州大学数学与计算机科学学院 福州 350116
  • 收稿日期:2017-01-11 修回日期:2017-05-31 出版日期:2017-08-26 发布日期:2017-08-26
  • 通讯作者: 邵志强,E-mail:zqshao@fzu.edu.cn E-mail:zqshao@fzu.edu.cn
  • 作者简介:李华惠,E-mail:792189950@qq.com
  • 基金资助:
    福建省自然科学基金(2015J01014)

Interactions of Delta Shock Waves for the Nonsymmetric Keyfitz-Kranzer System with Split Delta Functions

Li Huahui, Shao Zhiqiang   

  1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116
  • Received:2017-01-11 Revised:2017-05-31 Online:2017-08-26 Published:2017-08-26
  • Supported by:
    Supported by the Natural Science Foundation of Fujian Province (2015J01014)

摘要: 该文用分离的Delta函数法研究非对称Keyfitz-Kranzer系统中Delta激波的交互性.当初值是三个分段常数状态时,讨论Delta激波和接触间断的交互性,构造性的得到四种不同交互作用下的解.同时,获得当小扰动ε→0时,黎曼解是稳定的.

关键词: 非对称Keyfitz-Kranzer系统, 黎曼解, Delta激波, 波的相互作用

Abstract: In this paper, we study the interactions of delta shock waves with contact discontinuities for the nonsymmetric Keyfitz-Kranzer system with split delta functions. The solutions are obtained constructively when the initial data are three piecewise constant states. The global structure and large time-asymptotic behaviors of the solutions are analyzed case by case. Moreover, it can be found that the Riemann solutions are stable for such small perturbations with initial data by studying the limits of the solutions when the perturbed parameter ε→0.

Key words: Nonsymmetric Keyfitz-Kranzer system, Riemann problem, Delta shock wave, Wave interaction

中图分类号: 

  • O175.29