[1] Citti G, Uguzzoni F. Critical semilinear equations on the Heisenberg group:the effect of the topology of the domain. Nonlinear Analysis, 2001, 46:399-417 [2] Garofalo N, Lanconelli N. Existence and nonexistence results for semilinear equations on the Heisenberg group. Indiana Univ Math J, 1992, 41:71-98 [3] Gamara N, Guemri H, Amri A. Existence results for critical semi-linear equations on Heisenberg group domains. Mediterr J Math, 2012, 9:803-831 [4] Mokrani H. Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential. Comm Pure Appl Math, 2009, 8(5):1619-1636 [5] Chen J, Eugénio M. Rocha. Existence of solution of sub-elliptic equations on the Heisenberg group with critical growth and double singularities. Opuscula Math, 2013, 33:237-254 [6] Hsu T S. Multiplicity results for p-Laplacian with critical nonlinearity of concave-convex type and signchanging weight functions. Absr and Appl Anal, 2009, 2009:1-24 [7] Fan H, Liu X. Multiple positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. Acta Mathematica Scientia, 2014, 34B:1111-1126 [8] Chen N, Tu Q. The Nehari manifold for a quasilinear sub-elliptic equation with a sign-changing weight function on the Heisenberg group. In Press [9] Wang L, Wei Q, Kang D. Multiple positive solutions for p-Laplace elliptic equations involving concaveconvex nonlinearities and a Hardy-type term. Nonlinear Anal, 2011, 74:626-638 [10] Wu T F. Multiplicity results for a semilinear elliptic equation involving sign-changing weight function. Rocky Mountain Journal of Mathematics, 2009, 39(3):995-1011 [11] Brown K J, Wu T F. A fibering map approach to a semilinear elliptic boundary value problem. Electron J Differential Equations, 2007, 2007(69):1-9 [12] D'Ambrosio L. Some Hardy inequalities on the Heisenberg group. Differential Equations, 2004, 40(4):552-564 [13] Niu P, Zhang H, Wang Y. Hardy type and Rellich type inequalities on the Heisenberg group. American Mathematical Society, 2001, 129(12):3623-3630 [14] Loiudice A. Improved Sobolev inequalities on the Heisenberg group. Nonlinear Anal, 2005, 62:953-962 [15] 韩军强, 钮鹏程. H型群上的偏微分方程. 西安:西北工业大学出版, 2009 Han J, Niu P. The Partial Differential Equation on H-Type Group. Xi'an:Northwestern Polytechnical University Press, 2009 [16] Struwe M. Variational Methods. New York:Springer-Verlag, 2001 [17] Bahri A, Coron J M. On a nonlinear elliptic equation involving the critical Sobolev exponent:the effect of the topology of the domain. Comm Pure Appl Math, 1988, 41:253-294 [18] Folland G B, Stein E M. Estimates for the ∂b complex and analysis on the Heisenberg group. Comm Pure Appl Math, 1974, 27:429-522 [19] Citti G. Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian. Ann Mat Pura Appl, 1995, 169:375-392 [20] Uguzzoni F. A non-existence theorem for a semilinear Dirichlet problem involving critical exponent on halfspaces of the Heisenberg group. Nonlinear Differential Equations Appl, 1999, 6:191-206 [21] Lu G. Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups. Acta Mathematica Sinica, 2000, 16:405-444 [22] Tralli G. A certain critical density property for invariant Harnack inequalities in H-typegroups. J Differential Equations, 2014, 256:461-474 [23] Lanconelli E, Uguzzoni F. Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group. Boll Un Mat Ital, 1998, 1B(1):139-168 |