[1] Bonilla L L,Velarde M G.Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law.J Math Phys,1979,20(12):2692-2703 [2] Doelman A,Kaper T J,Zegeling P A.Pattern formation in the one-dimensional Gray-Scott model.Nonlinearity,1997,10(2):523-563 [3] Du L,Wang M X.Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model.J Math Anal Appl,2010,366(2):473-485 [4] Ghergu M.Non-constant steady-state solutions for Brusselator type systems.Nonlinearity,2008,21(10):2331-2345 [5] Hassard B D,Kazarinoff N D,Wan Y H.Theory and Applications of Hopf Bifurcation.Cambridge:Cambridge University Press,1981 [6] Ibanez J L,Velarde M G.Multiple steady states in a simple reaction-diffusion model with michaelis-menten(first-order hinshelwood-langmuir) saturation law:The limit of large separation in the two diffusion constants.J Math Phy,1978,19(1):151-156 [7] Jin J Y,Shi J P,Wei J J,Yi F Q.Bifurcations of patterned solutions in diffusive lengyel-epstein system of cima chemical reaction.R Moun J Math,2013,43(5):1637-1674 [8] Kolokolnikov T,Erneux T,Wei J.Mesa-type patterns in the one-dimensional Brusselator and their stability.Phys D,2006,214(1):63-77 [9] Lengyel I,Epstein I R.Diffusion-induced instability in chemically reacting systems:steady-state multiplicity,oscillation,and chaos.Chaos,1991,1(1):69-76 [10] McGough J S,Riley K.Pattern formation in the Gray-Scott model.Nonlinear Anal Real World Appl,2004,5(1):105-121 [11] Ni W M.Qualitative properties of solutions to elliptic problems.Handbook of Differential Equations Stationary Partial Differential Equations,2004,1:157-233 [12] Peng R,Shi J P,Wang M X.On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law.Nonlinearity,2008,21(7):1471-1488 [13] Peng R,Sun F Q.Turing pattern of the Oregonator model.Nonlinear Anal,2010,72(5):2337-2345 [14] Peng R,Yi F Q.On spatiotemporal pattern formation in a diffusive bimolecular model.Discrete Contin Dyn Syst Ser B,2011,15(1):217-230 [15] Song Y L,Zou X F.Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point.Comp Math Appl,2014,67(10):1978-1997 [16] Turing A M.The chemical basis of morphogenesis.P Tran Roy Soc London Ser B Bio Sci,1952,237(641):37-72 [17] Wang J F,Shi J P,Wei J J.Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey.J Differential Equations,2011,251(4/5):1276-1304 [18] Wang J F,Wei J J,Shi J P.Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems.J Differential Equations,2016,260(4):3495-3523 [19] Wei J C.Pattern formations in two-dimensional Gray-Scott model:existence of single-spot solutions and their stability.Phys D,2001,148:20-48 [20] Wiggins S,Golubitsky M.Introduction to Applied Nonlinear Dynamical Systems and Chaos:Volume 2.New York:Springer,1990 [21] Yi F Q,Liu J X,Wei J J.Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model.Nonlinear Anal Real World Appl,2010,11(5):3770-3781 [22] Yi F Q,Wei J J,Shi J P.Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system.J Differential Equations,2009,246(5):1944-1977 [23] Zhou J.Bifurcation analysis of the oregonator model.Appl Math Letters,2016,52:192-198 [24] Zhou J,Mu C L.Pattern formation of a coupled two-cell Brusselator model.J Math Anal Appl,2010,366(2):679-693 [25] Zhou J.Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type Ⅲ functional response.Nonlinear Dyn,2015,81(3):1535-1552 |