[1] Carroll R W,Glick A J.On the Ginzburg-Landau equations.Arch Rat Mech Anal,1968,16:373-384 [2] Damgaard P H,Heller U M.Observations of the Meissner effect in the lattice Higgs model.Phys Rev Lett,1988,60:1246-1249 [3] Felsager B.Geometry,Particles,and Fields.New York:Springer,1998 [4] Ginzburg D,Landau L D.On the theory of superconductivity//Collected Paper of Landau L D,Haar D ter,ed.New York:Pergamon,1965:546-568 [5] Gilbarg D,Trudinger N S.Elliptic Partial Differential Equations of Second Order.Berlin and New York:Springer,1977 [6] Jacobs L,Rebbi C.Interaction energy of superconducting vortices.Phys Rev B,1978,19:4486-4494 [7] Jaffe A,Taubes C H.Vortices and Monopoles.Boston:Birkhauser,1980 [8] Klimov V S.Nontrivial solutions of the Ginzburg-Landau equations.Theor Math Phys,1982,50:383-389 [9] Ladyzhenskaya O A.The Mathematical Theory of Viscous Incompressible Flow.New York,London,and Paris:Gordon and Breach,Science Publishers,1969 [10] LeRoux M N.Methode d'lements finis pour la resolution numeripue de exterieurs en dimension 2.RAIRO-Analyse Numerique,1977,11:27-60 [11] Nielsen H B,Olesen P.Vortex-line models for dual strings.Nucl Phys B,1973,61:45-61 [12] Odeh F.Existence and bifurcation theorem for the Ginzburg-Landau equations.J Math Phys,1967,8:2351-2356 [13] Taubes C H.Arbitrary vortex solutions to the first order Ginzburg-Landau equations.Commun Math Phys,1980,72:277-292 [14] Taubes C H.On the equivalence of the first and second order equations for gauge theories.Commun Math Phys,1980,75:207-227 [15] Weinberg E J.Multivortex solutions of the Ginzburg-Landau equations.Phys Rev D,1979,19:3008-3012 [16] Yang Y.Existence,regularity,and asymptotic behavior of the solutions to the Ginzburg-Landau equations on R3.Commun Math Phys,1989,123:147-161 [17] Yang Y.On the Abelian Higgs models with sources.J Math Pures Appl,1991,70:325-344 [18] Yang Y.The existence of Ginzburg-Landau solution on the plane by a direct variational method.Ann Inst H Poincaré-Anal Nonlineaire,1984,11:517-536 |