数学物理学报 ›› 2017, Vol. 37 ›› Issue (2): 299-306.

• 论文 • 上一篇    下一篇

Ginzburg-Landau方程极小能量解存在性的新证明

黄德成1, 陈守信2   

  1. 1 信阳职业技术学院数学与计算机学院 河南信阳 464000;
    2 河南大学数学与统计学院, 现代数学研究所 河南开封 475004
  • 收稿日期:2016-06-13 修回日期:2016-10-22 出版日期:2017-04-26 发布日期:2017-04-26
  • 通讯作者: 陈守信 E-mail:chensx@henu.edu.cn
  • 作者简介:黄德成,huangdecheng123@126.com
  • 基金资助:
    国家自然科学基金(11471100,11471099)和河南省科技厅基础与前沿项目基金(142300410110)

New Proof for the Existence of Minimizing Energy Solutions for the Ginzburg-Landau Equations

Huang Decheng1, Chen Shouxin2   

  1. 1 School of Mathematics and Computers, Xinyang Vocational and Technical College, Henan Xinyang 464000;
    2 Institute of Contemporary Mathmatics, School of Mathematics and Statistics, Henan University, Henan Kaifeng 475004
  • Received:2016-06-13 Revised:2016-10-22 Online:2017-04-26 Published:2017-04-26
  • Supported by:
    Supported by the NSFC (11471100, 11471099) and the Foundation and Frontier Project of Department of Science and Technology of Henan Province (142300410110)

摘要: 对R2上带有外磁场或一般流源场的Ginzburg-Landau方程组,借助于Hardy型不等式,利用直接变分的方法重新证明了其极小能量解的存在性,且该解满足Coulomb规范.

关键词: Ginzburg-Landau方程, 变分法, Hardy型不等式, 解的存在性

Abstract: In this paper we use a direct variational method, with the help of Hardy type inequality, to give a new proof for the existence of minimizing energy solutions for the Ginzburg-Landau equations in R2 coupled with an external magnetic field or a source current. Moreover, the solution satisfies the Coulomb gauge.

Key words: Ginzburg-Landau equations, Variational method, Hardy type inequality, Existence of solutions

中图分类号: 

  • O175.25