数学物理学报 ›› 2017, Vol. 37 ›› Issue (1): 122-145.

• 论文 • 上一篇    下一篇

非线性次椭圆方程障碍问题很弱解的高阶可积性

杜广伟, 钮鹏程   

  1. 西北工业大学应用数学系 西安 710129
  • 收稿日期:2016-06-21 修回日期:2016-11-20 出版日期:2017-02-26 发布日期:2017-02-26
  • 通讯作者: 钮鹏程 E-mail:pengchengniu@nwpu.edu.cn
  • 作者简介:杜广伟,E-mail:guangwei87@mail.nwpu.edu.cn
  • 基金资助:

    国家自然科学基金(11271299)

Higher Integrability for Very Weak Solutions of Obstacle Problems to Nonlinear Subelliptic Equations

Du Guangwei, Niu Pengcheng   

  1. Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129
  • Received:2016-06-21 Revised:2016-11-20 Online:2017-02-26 Published:2017-02-26
  • Supported by:

    Supported by the NSFC (11271299)

摘要:

该文首先证明了一类由满足Hörmander条件的向量场构成的次椭圆方程Kψ,u0r-障碍问题很弱解的局部高阶可积性,进而说明了其很弱解即为经典意义下的弱解.作为其应用,得到了障碍问题很弱解的紧性结果.此外,在当区域Ω满足某容度条件假设时,证明了上述障碍问题很弱解的全局高阶可积性.

关键词: 非线性次椭圆方程, 障碍问题, 很弱解, 高阶可积性, 紧性

Abstract:

In this paper we first establish the local higher integrability for very weak solutions of the Kψ, u0r-obstacle problems to the nonlinear subelliptic equations constructed by Hörmander vector fields which implies the very weak solutions are classical weak solutions. As an application, the compactness results are obtained. We also derive the global higher integrability for very weak solutions of the Kψ, u0r-obstacle problems with a capacitary condition on Ω.

Key words: Nonlinear subelliptic equation, Obstacle problem, Very weak solutions, Higher integrability, Compactness result

中图分类号: 

  • O175.2