[1] Bebernes J, Eberly D. Mathematical Problems from Combustion Theory. New York:Springer-Verlag, 1989
[2] Straughan B. Explosive Instabilities in Mechanics. Berlin:Springer, 1998
[3] Quittner R, Souplet P. Superlinear Parabolic Problems:Blow-up, Global Existence and Steady States. Basel:Birkhauser, 2007
[4] Hu B. Blow-up Theories for Semilinear Parabolic Equations. Heidelberg:Springer, 2011
[5] Bandle C, Brunner H. Blow-up in diffusion equations:A survey. J Comput Appl Math, 1998, 97(1/2):3-22
[6] Levine H A. The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32(2):262-288
[7] Levine H A. Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics:The method of unbounded Fourier coefficients. Math Ann, 1975, 214(3):205-220
[8] Payne L E, Schaefer P W. Lower bound for blow-up time in parabolic problems under Neumann conditions. Appl Anal, 2006, 85(10):1301-1311
[9] Song J C. Lower bounds for the blow-up time in a non-local reaction-diffusion problem. Appl Math Lett, 2011, 24(5):793-796
[10] Liu Y. Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions. Math Comput Modelling, 2013, 57(3/4):926-931
[11] Fang Z B, Yang R, Chai Y. Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption. Math Probl Eng, 2014, 2014(2):1-6
[12] Tang G S, Li Y F, Yang X T. Lower bounds for the blow-up time of the nonlinear non-local reaction diffusion problems in RN(N≥3). Bound Value Probl, 2014, 2014(1):1-5
[13] Bao A G, Song X F. Bounds for the blowup time of the solutions to quasi-linear parabolic problems. Z Angew Math Phys, 2014, 65(1):115-123
[14] Ahmed I, Mu C L, Zheng P, Zhang F C. Blow-up and global existence for the non-local reaction diffusion problem with time dependent coefficient. Bound Value Probl, 2013, 2013(1):1-6
[15] Lv X S, Song X F. Bounds of the blowup time in parabolic equations with weighted source under nonhomogeneous Neumann boundary condition. Math Methods Appl Sci, 2014, 37(7):1019-1028
[16] Song X F, Lv X S. Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source. Appl Math Comput, 2014, 236(1):78-92
[17] Ma L W, Fang Z B. Blow-up phenomena for a semilinear parabolic equation with weighted inner absorption under nonlinear boundary flux. Math Method Appl Sci, 2016, DOI:10.1002/mma.3971
[18] Ma L W, Fang Z B. Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux. Nonlinear Anal Real World Appl, 2016, 32:338-354
[19] Furter J, Grinfield M. Local vs. nonlocal interactions in populations dynamics. J Math Biol, 1989, 27(1):65-80
[20] Calsina A, Perello C, Saldana J. Non-local reaction-diffusion equations modelling predator-prey coevolution. Publ Mat, 1994, 38(2):315-325
[21] Allegretto W, Fragnelli G, Nistri P, Papin D. Coexistence and optimal control problems for a degenerate predator-prey model. J Math Anal Appl, 2011, 378(2):528-540
[22] Bebernes J, Bressan A. Thermal behavior for a confined reactive gas. J Differential Equations, 1982, 44(1):118-133
[23] Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York:Springer, 2011 |